Skip to main content

Sparse RNA Folding: Time and Space Efficient Algorithms

  • Conference paper
Combinatorial Pattern Matching (CPM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5577))

Included in the following conference series:

Abstract

The classical algorithm for RNA single strand folding requires O(n Z) time and O(n 2) space, where n denotes the length of the input sequence and Z is a sparsity parameter that satisfies n ≤ Z ≤ n 2. We show how to reduce the space complexity of this algorithm. The space reduction is based on the observation that some solutions for subproblems are not examined after a certain stage of the algorithm, and may be discarded from memory. This yields an O(nZ) time and O(Z) space algorithm, that outputs both the cardinality of the optimal folding as well as a corresponding secondary structure. The space-efficient approach also extends to the related RNA simultaneous alignment with folding problem, and can be applied to reduce the space complexity of the fastest algorithm for this problem from O(n 2 m 2) down to \(O(nm^2 + \tilde{Z})\), where n and m denote the lengths of the input sequences to be aligned, and \(\tilde{Z}\) is a sparsity parameter that satisfies n m ≤ \(\tilde{Z}\) ≤ n 2 m 2.

In addition, we also show how to speed up the base-pairing maximization variant of RNA single strand folding. The speed up is achieved by combining two independent existing techniques, which restrict the number of expressions that need to be examined in bottleneck computations of these algorithms. This yields an O(LZ) time and O(Z) space algorithm, where L denotes the maximum cardinality of a folding of the input sequence.

Additional online supporting material may be found at:

http://www.cs.bgu.ac.il/zakovs/RNAfold/CPM09_supporting_material.pdf

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Consortium, A.F.B., Backofen, R., Bernhart, S.H., Flamm, C., Fried, C., Fritzsch, G., Hackermuller, J., Hertel, J., Hofacker, I.L., Missal, K., Mosig, A., Prohaska, S.J., Rose, D., Stadler, P.F., Tanzer, A., Washietl, S., Will, S.: RNAs everywhere: genome-wide annotation of structured RNAs. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 308(1), 1–25 (2007)

    Google Scholar 

  2. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research (13), 3406–3415 (2003)

    Article  Google Scholar 

  3. Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Research (13), 3429–3431 (2003)

    Article  Google Scholar 

  4. Zuker, M.: Computer prediction of RNA structure. Methods Enzymol. 180, 262–288 (1989)

    Article  MATH  Google Scholar 

  5. Tinoco, I., Borer, P., Dengler, B., Levine, M., Uhlenbeck, O., Crothers, D., Gralla, J.: Improved estimation of secondary structure in ribonucleic acids. Nature New Biology 246, 40–41 (1973)

    Article  Google Scholar 

  6. Waterman, M., Smith, T.: RNA secondary structure: a complete mathematical analysis. Mathematical Biosciences 42, 257–266 (1978)

    Article  MATH  Google Scholar 

  7. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single-stranded RNA. PNAS 77(11), 6309–6313 (1980)

    Article  Google Scholar 

  8. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9(1), 133–148 (1981)

    Article  Google Scholar 

  9. Akutsu, T.: Approximation and exact algorithms for RNA secondary structure prediction and recognition of stochastic context-free languages. Journal of Combinatorial Optimization 3, 321–336 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wexler, Y., Zilberstein, C., Ziv-Ukelson, M.: A study of accessible motifs and RNA folding complexity. Journal of Computational Biology 14(6), 856–872 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In: Proc. 39th Symposium on the Theory of Computing (STOC), pp. 590–598 (2007)

    Google Scholar 

  12. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM Journal on Applied Mathematics 45(5), 810–825 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mathews, D.H., Turner, D.H.: Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. Journal of Molecular Biology 317(2), 191–203 (2002)

    Article  Google Scholar 

  14. Havgaard, J., Lyngso, R., Stormo, G., Gorodkin, J.: Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics 21(9), 1815–1824 (2005)

    Article  Google Scholar 

  15. Ziv-Ukelson, M., Gat-Viks, I., Wexler, Y., Shamir, R.: A faster algorithm for RNA co-folding, pp. 174–185 (2008)

    Google Scholar 

  16. Will, S., Reiche, K., Hofacker, I.L., Stadler, P.F., Backofen, R.: Inferring non-coding RNA families and classes by means of genome-scale structure-based clustering. PLOS Computational Biology 3(4), e65 (2007)

    Article  Google Scholar 

  17. Gardner, P.P., Giegerich, R.: A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5, 140 (2004)

    Article  Google Scholar 

  18. Jansson, J., Ng, S.K., Sung, W.K., Willy, H.: A faster and more space-efficient algorithm for inferring arc-annotations of RNA sequences through alignment. Algorithmica 46(2), 223–245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  20. Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequences. Communications of the ACM 18(6), 341–343 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. JACM 24, 664–675 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Backofen, R., Tsur, D., Zakov, S., Ziv-Ukelson, M. (2009). Sparse RNA Folding: Time and Space Efficient Algorithms. In: Kucherov, G., Ukkonen, E. (eds) Combinatorial Pattern Matching. CPM 2009. Lecture Notes in Computer Science, vol 5577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02441-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02441-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02440-5

  • Online ISBN: 978-3-642-02441-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics