Skip to main content

Quantitative SPECT/CT

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 187))

Abstract

Conventional nuclear medical imaging uses radiopharmaceuticals labeled by single-photon emitters such as Tc-99m, I-123, or I-131 in vivo. Classical clinical examples are the study of bone metabolism by bone scintigraphy with the Tc-99m-labeled polyphosphonates or of iodine transport into the thyroid gland using Tc-99m-pertechnetate. With single-photon emission-computed tomography (SPECT), the distribution of these radiopharmaceuticals within the human body is three-dimensionally visualized. Contrary to positron emission tomography (PET), current SPECT technology does not allow the quantification of regional values of radioactivity tissue concentration as SPECT images are grossly compromised by artifacts caused by photon scatter and attenuation. With the advent of hybrid imaging systems combining a SPECT camera with an X-ray computerized (CT) scanner in one gantry, reliable corrections for these artifacts seem possible, allowing truly quantitative SPECT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida P, Ribeiro MJ, Bottlaender M, Loc’h C, Langer O, Strul D, Hugonnard P, Grangeat P, Mazière B, Bendriem B (1999) Absolute quantitation of iodine-123 epidepride kinetics using single-photon emission tomography: comparison with carbon-11 epidepride and positron emission tomography. Eur J Nucl Med Mol Imag 26(12):1580–1588

    Article  CAS  Google Scholar 

  • Anger HO (1958) Scintillation Camera. Rev Sci Instrum 29(1):27–33

    Article  CAS  Google Scholar 

  • Anger HO (1964) Scintillation camera with multichannel collimators. J Nucl Med 5(7):515–531

    PubMed  CAS  Google Scholar 

  • Blankespoor SC, Xu X, Kaiki K, Brown JK, Tang HR, Cann CE, Hasegawa BH (1996) Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE T Nucl Sci 43(4):2263–2274

    Article  Google Scholar 

  • Bockisch A, Freudenberg LS, Schmidt D, Kuwert T (2009) Hybrid imaging by SPECT/CT and PET/CT: proven outcomes in cancer imaging. Semin Nucl Med 39(4):276–289

    Article  PubMed  Google Scholar 

  • Branderhorst W, Vastenhouw B, van der Have F, Blezer E, Bleeker W, Beekman F (2011) Targeted multi-pinhole SPECT. Eur J Nucl Med Mol Imaging 38(3):552–556

    Article  PubMed  Google Scholar 

  • Chen CH, Muzic RF Jr, Nelson AD, Adler LP (1998) A nonlinear spatially variant object-dependent system model for prediction of partial volume effects and scatter in PET. IEEE Trans Med Imag 17(2):214–227

    Article  CAS  Google Scholar 

  • Chen J, Caputlu-Wilson S, Shi H, Galt J, Faber T, Garcia E (2006) Automated quality control of emission-transmission misalignment for attenuation correction in myocardial perfusion imaging with SPECT-CT systems. J Nucl Cardiol 13(1):43–49

    Article  PubMed  Google Scholar 

  • Cherry SR, Sorenson JA, Phelps ME (2003) Physics in Nuclear Medicine. Elsevier, Philadelphia

    Google Scholar 

  • Da Silva AJ, Tang HR, Wong KH, Wu MC, Dae MW, Hasegawa BH (2001) Absolute quantification of regional myocardial uptake of 99mTc-sestamibi with SPECT: experimental validation in a porcine model. J Nucl Med 42(5):772–779

    PubMed  Google Scholar 

  • Dewaraja Y, Ljungberg M, Koral K (2008) Effects of dead time and pile up on quantitative SPECT for I-131 dosimetric studies. J Nucl Med 49:47

    Google Scholar 

  • Dewaraja YK, Schipper MJ, Roberson PL, Wilderman SJ, Amro H, Regan DD, Koral KF, Kaminski MS, Avram AM (2010) 131I-tositumomab radioimmunotherapy: initial tumor dose–response results using 3-dimensional dosimetry including radiobiologic modeling. J Nucl Med 51(7):1155–1162

    Article  PubMed  Google Scholar 

  • Du Y, Tsui BMW, Frey EC (2005) Partial volume effect compensation for quantitative brain SPECT imaging. IEEE Trans Med Imag 24(8):969–976

    Article  Google Scholar 

  • El Fakhri GN, Buvat I, Pélégrini M, Benali H, Almeida P, Bendriem B, Todd-Pokropek A, Di Paola R (1999) Respective roles of scatter, attenuation, depth-dependent collimator response and finite spatial resolution in cardiac single-photon emission tomography quantitation: a monte carlo study. Eur J Nucl Med Mol Imaging 26(5):437–446

    Article  Google Scholar 

  • Floyd CE et al (1984) Energy and spatial distribution of multiple order compton scatter in SPECT: a monte carlo investigation. Phys Med Biol 29(10):1217–1230

    Article  PubMed  CAS  Google Scholar 

  • Flux G, Bardies M, Monsieurs M, Savolainen S, Strands SE, Lassmann M (2006) The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys 16(1):47–59

    PubMed  Google Scholar 

  • Frey EC, Tsui BMW (1990) Parameterization of the scatter response function in SPECT imaging using monte carlo simulation. IEEE Trans Nucl Sci 37(3):1308–1315

    Article  CAS  Google Scholar 

  • Frey EC, Tsui BMW (1994) Modeling the scatter response function in inhomogenous scattering media for SPECT. IEEE T Nucl Sci 41(4):1585–1593

    Article  Google Scholar 

  • Germain P, Baruthio J, Roul G, Dumitresco B (2000) First-pass MRI compartmental analysis at the chronic stage of infarction: myocardial flow reserve parametric map. In: Computers in Cardiology 2000, pp675–678

    Google Scholar 

  • Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL (2000) Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med 27(2):161–169

    Article  PubMed  CAS  Google Scholar 

  • Geworski L, Schaefer A, Knoop BO, Pinkert J, Plotkin M, Kirsch CM (2010) Physikalische Aspekte szintigraphisch basierter Dosimetrie bei nuklearmedizinischen Therapien. Nuklearmedizin 49(3):79–123

    Article  Google Scholar 

  • Gilland DR, Jaszczak RJ, Liang Z, Greer KL, Coleman RE (1991) Quantitative SPECT brain imaging: effects of attenuation and detector responses. In: Nuclear Science Symposium and Medical Imaging Conference, 1991, Conference Record of the 1991 IEEE, vol. 1723, pp.1723–1727

    Google Scholar 

  • Gilman MD, Fischman AJ, Krishnasetty V, Halpern EF, Aquino SL (2006) Optimal CT breathing protocol for combined thoracic PET/CT. Am J Roentgenol 187(5):1357–1360

    Article  Google Scholar 

  • Gullberg GT et al (2010) Dynamic single photon emission computed tomography-basic principles and cardiac applications. Phys Med Biol 55(20):R111–R191

    Article  PubMed  Google Scholar 

  • Han J, Köstler H, Bennewitz C, Kuwert T, Hornegger J (2008) Computer-aided evaluation of anatomical accuracy of image fusion between X-ray CT and SPECT. Comput Med Imaging Graph 32(5):388–395

    Article  PubMed  Google Scholar 

  • Hoffman EJ, Huang S-C, Phelps ME (1979) Quantitation in positron emission computed tomography: 1. effect of object size. J Comput Assist Tomogr 3(3):299–308

    Article  PubMed  CAS  Google Scholar 

  • Hutton BF, Lau YH (1998) Application of distance-dependent resolution compensation and post-reconstruction filtering for myocardial SPECT. Phys Med Biol 43(6):1679–1693

    Article  PubMed  CAS  Google Scholar 

  • Jaszczak RJ, Greer KL, Floyd CE Jr, Harris CC, Coleman RE (1984) Improved SPECT quantification using compensation for scattered photons. J Nucl Med 25(8):893–900

    PubMed  CAS  Google Scholar 

  • Kessler RM, Ellis JRJ, Eden M (1984) Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 8(3):514–522

    Article  PubMed  CAS  Google Scholar 

  • Kohli V et al (1998a) Comparison of frequency-distance relationship and gaussian-diffusion-based methods of compensation for distance-dependent spatial resolution in SPECT imaging. Phys Med Biol 43(4):1025

    Article  PubMed  CAS  Google Scholar 

  • Kohli V, King MA, Tin-Su P, Glick SJ (1998b) Compensation for distance-dependent resolution in cardiac-perfusion SPECT: impact on uniformity of wall counts and wall thickness. IEEE T Nucl Sci 45(3):1104–1110

    Article  Google Scholar 

  • Koral KF, Clinthorne NH, Leslie Rogers W (1986) Improving emission-computed-tomography quantification by compton-scatter rejection through offset windows. Nucl Instrum Methods Phys Res Sect A: Accelerators, Spectrometers, Detectors and Associated Equipment 242(3):610–614

    Article  Google Scholar 

  • Koral KF, Wang X, Rogers WL, Clinthorne NH, Wang X (1988) SPECT compton-scattering correction by analysis of energy spectra. J Nucl Med 29(2):195–202

    PubMed  CAS  Google Scholar 

  • LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK (1994) Investigation of the use of X-ray CT images for attenuation compensation in SPECT. IEEE T Nucl Sci 41(6):2793–2799

    Article  Google Scholar 

  • Lewis DH, Bluestone JP, Savina M, Zoller WH, Meshberg EB, Minoshima S (2006) Imaging cerebral activity in recovery from chronic traumatic brain injury: a preliminary report. J Neuroimaging 16(3):272–277

    Article  PubMed  Google Scholar 

  • Ljungberg M, Strand S-E (1990) Scatter and attenuation correction in SPECT using density maps and monte carlo simulated scatter functions. J Nucl Med 31(9):1560–1567

    PubMed  CAS  Google Scholar 

  • National Electrical Manufacturers Association (2007) Performance measurements of gamma cameras. In: NEMA NU 1-2007ed. National Electrical Manufacturers Association

    Google Scholar 

  • Nömayr A, Römer W, Strobel D, Bautz W, Kuwert T (2006) Anatomical accuracy of hybrid SPECT/spiral CT in the lower spine. Nucl Med Commun 27(6):521–528

    Article  PubMed  Google Scholar 

  • Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S (1991) A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imag 10(3):408–412

    Article  CAS  Google Scholar 

  • Pretorius PH, King MA (2009) Diminishing the impact of the partial volume effect in cardiac SPECT perfusion imaging. Med Phys 36(1):105–115

    Article  PubMed  Google Scholar 

  • Pretorius PH et al (1998) Reducing the influence of the partial volume effect on SPECT activity quantitation with 3D modelling of spatial resolution in iterative reconstruction. Phys Med Biol 43(2):407–420

    Article  PubMed  CAS  Google Scholar 

  • Römer W, Reichel N, Vija HA, Nickel I, Hornegger J, Bautz W, Kuwert T (2006) Isotropic reconstruction of SPECT data using OSEM3D: Correlation with CT. Acad Radiol 13(4):496–502

    Article  PubMed  Google Scholar 

  • Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BMW, Yester M (1995) Quantitative SPECT imaging: a review and recommendations by the focus committee of the society of nuclear medicine computer and instrumentation council. J Nucl Med 36(8):1489–1513

    PubMed  CAS  Google Scholar 

  • Rousset O, Ma Y, Kamber M, Evans AC (1993) 3D simulations of radiotracer uptake in deep nuclei of human brain. Comput Med Imaging Graph 17(4–5):373–379

    Article  PubMed  CAS  Google Scholar 

  • Rousset OG, Ma Y, Evans AC (1998) Correction for partial volume effects in PET: principle and validation. J Nucl Med 39(5):904–911

    PubMed  CAS  Google Scholar 

  • Sandström M, Garske U, Granberg D, Sundin A, Lundqvist H (2010) Individualized dosimetry in patients undergoing therapy with 177Lu-DOTA-D-Phe1-Tyr3-octrcotate. Eur J Nucl Med Mol Imag 37(2):212–225

    Google Scholar 

  • Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM (2003) High-resolution SPECT using multipinhole collimation. IEEE T Nucl Sci 50(3):315–320

    Article  Google Scholar 

  • Seo Y, Aparici CM, Cooperberg MR, Konety BR, Hawkins RA (2009) In vivo tumor grading of prostate cancer using quantitative 111In-capromab pendetide SPECT/CT. J Nucl Med 51(1):31–36

    Article  PubMed  Google Scholar 

  • Shcherbinin S et al (2008) Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol 53(17):4595–4604

    Article  PubMed  CAS  Google Scholar 

  • Sidoti C, Agrillo U (2006) Chronic cortical stimulation for amyotropic lateral sclerosis: a report of four consecutive operated cases after a 2-year follow-up: technical case report. Neurosurgery 58(2):E384

    Google Scholar 

  • Soret M, Koulibaly PM, Darcourt J, Hapdey S, Buvat I (2003) Quantitative accuracy of dopaminergic neurotransmission imaging with 123I SPECT. J Nucl Med 44(7):1184–1193

    PubMed  CAS  Google Scholar 

  • Tang HR, Brown JK, Hasegawa BH (1996) Use of X-ray CT-defined regions of interest for the determination of SPECT recovery coefficients. In: Nuclear Science Symposium, 1996 Conference Record, IEEE, vol.1843, pp1840–1844

    Google Scholar 

  • Tsui BM, Frey EC, Zhao X, Lalush DS, Johnston RE, McCartney WH (1994) The importance and implementation of accurate 3D compensation methods for quantitative SPECT. Phys Med Biol 39(3):509–530

    Article  PubMed  CAS  Google Scholar 

  • Vandervoort E et al (2007) Implementation of an iterative scatter correction, the influence of attenuation map quality and their effect on absolute quantitation in SPECT. Phys Med Biol 52(5):1527

    Article  PubMed  Google Scholar 

  • von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions1. Radiology 238(2):405–422

    Article  Google Scholar 

  • Wells RG, Celler A, Harrop R (1998) Analytical calculation of photon distributions in SPECT projections. IEEE Trans Nucl Sci 45(6):3202–3214

    Article  CAS  Google Scholar 

  • Zaidi H, Hasegawa B (2003) Determination of the attenuation map in emission tomography. J Nucl Med 44(2):291–315

    PubMed  Google Scholar 

  • Zaidi H, Koral K (2006) Scatter correction strategies in emission tomography. In: Quantitative Analysis in Nuclear Medicine Imaginged. Springer US, pp 205–235

    Google Scholar 

  • Zaidi H, Frey EC, Tsui BMW (2006) Collimator-detector response compensation in SPECT. In: Quantitative Analysis in Nuclear Medicine Imaginged. Springer US, pp 141–166

    Google Scholar 

  • Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T (2010) Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med 51(6):921–928

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Ritt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ritt, P., Kuwert, T. (2013). Quantitative SPECT/CT. In: Schober, O., Riemann, B. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10853-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10853-2_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10852-5

  • Online ISBN: 978-3-642-10853-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics