Skip to main content

Approximation Algorithms for the Firefighter Problem: Cuts over Time and Submodularity

  • Conference paper
Algorithms and Computation (ISAAC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5878))

Included in the following conference series:

Abstract

We provide approximation algorithms for several variants of the Firefighter problem on general graphs. The Firefighter problem models the case where an infection or another diffusive process (such as an idea, a computer virus, or a fire) is spreading through a network, and our goal is to stop this infection by using targeted vaccinations. Specifically, we are allowed to vaccinate at most B nodes per time-step (for some budget B), with the goal of minimizing the effect of the infection. The difficulty of this problem comes from its temporal component, since we must choose nodes to vaccinate at every time-step while the infection is spreading through the network, leading to notions of “cuts over time”.

We consider two versions of the Firefighter problem: a “non-spreading” model, where vaccinating a node means only that this node cannot be infected; and a “spreading” model where the vaccination itself is an infectious process, such as in the case where the infection is a harmful idea, and the vaccine to it is another infectious idea. We give complexity and approximation results for problems on both models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Full version can be found at www.cs.rpi.edu/~eanshel/pubs.html

  2. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  3. Aspnes, J., Chang, K., Yamposlkiy, A.: Inoculation strategies for victims of viruses and the sum-of-squares partition problem. In: Proc. 16th ACM SODA (2005)

    Google Scholar 

  4. Bailey, N.: The Mathematical Theory of Infectious Diseases and its Applications. Hafner Press (1975)

    Google Scholar 

  5. Barabasi, A., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A 272 (1999)

    Google Scholar 

  6. Calinescu, G., Chekuri, C., Pal, M., Vondrak, J.: Maximizing a Monotone Submodular Function subject to a Matroid Constraint. In: Proc. 12th IPCO (2007)

    Google Scholar 

  7. Chalermsook, P., Chuzhoy, J.: Resource Minimization for Fire Containment. To appear in Proc. ACM SODA (2010)

    Google Scholar 

  8. Crosby, S., Finbow, A., Hartnell, B., Moussi, R., Patterson, K., Wattar, D.: Designing Fire Resistant Graphs. Congr. Numerantium 173 (2005)

    Google Scholar 

  9. Develin, M., Hartke, S.G.: Fire Containment in grids of dimension three or higher. Discrete Applied Mathematics 155(17) (2007)

    Google Scholar 

  10. Dezső, Z., Barabási, A.: Halting viruses in scale-free networks. Physical Review E 65 (2002)

    Google Scholar 

  11. Dreyer Jr., P.A., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discrete Applied Mathematics 157(7) (2009)

    Google Scholar 

  12. Engelberg, R., Könemann, J., Leonardi, S., Naor, J(S.): Cut problems in graphs with a budget constraint. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 435–446. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Eubank, S., Kumar, V., Marathe, M., Srinivasan, A., Wang, N.: Structural and algorithmic aspects of massive social networks. In: Proc. 15th ACM SODA (2004)

    Google Scholar 

  14. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45 (1998)

    Google Scholar 

  15. Finbow, S., King, A.D., MacGillivray, G., Rizzi, R.: The Fire fighter problem on graphs of maximum degree three. Discrete Mathematics 307 (2007)

    Google Scholar 

  16. Finbow, S., MacGillivray, G.: The Firefighter Problem: A survey of results, directions and questions (Manuscript) (2007)

    Google Scholar 

  17. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions - II. Math. Prog. Study 8 (1978)

    Google Scholar 

  18. Fogarty, P.: Catching Fire on Grids, M.Sc. Thesis, Department of Mathematics, University of Vermont (2003)

    Google Scholar 

  19. Giakkoupis, G., Gionis, A., Terzi, E., Tsaparas, P.: Models and algorithms for network immunization. Technical Report C-2005-75, Department of Computer Science, University of Helsinki (2005)

    Google Scholar 

  20. Hartnell, B.L.: Firefighter! An application of domination. Presentation. In: 25th Manitoba Conference on Combinatorial Mathematics and Computing, University of Manitoba in Winnipeg, Canada (1995)

    Google Scholar 

  21. Hartnell, B., Li, Q.: Firefighting on trees: How bad is the greedy algorithm? Congr. Numer. 145 (2000)

    Google Scholar 

  22. Hayrapetyan, A., Kempe, D., Pál, M., Svitkina, Z.: Unbalanced graph cuts. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 191–202. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Kempe, D., Kleinberg, J.M., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. King, A., MacGillivray, G.: The Firefighter Problem For Cubic Graphs. Discrete Mathematics 307 (2007)

    Google Scholar 

  25. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: Proc. 41st IEEE FOCS (2000)

    Google Scholar 

  26. Leizhen, C., Verbin, E., Yang, L.: Firefighting on trees (1 − 1/e)–approximation, fixed parameter tractability and a subexponential algorithm. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 258–269. Springer, Heidelberg (2008)

    Google Scholar 

  27. Leizhen, C., Weifan, W.: The Surviving Rate of a Graph. To appear in SIAM Journal on Discrete Mathematics (2009)

    Google Scholar 

  28. MacGillivray, G., Wang, P.: On The Firefighter Problem. JCMCC, 47 (2003)

    Google Scholar 

  29. Nowak, M., May, R.: Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  30. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and sub-constant error-probability PCP characterization of NP. In: Proc. 29th ACM STOC (1997)

    Google Scholar 

  31. Wang, P., Moeller, S.: Fire Control on graphs. J. Combin. Math. Combin. Comput. 41 (2002)

    Google Scholar 

  32. Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anshelevich, E., Chakrabarty, D., Hate, A., Swamy, C. (2009). Approximation Algorithms for the Firefighter Problem: Cuts over Time and Submodularity. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_98

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10631-6_98

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10630-9

  • Online ISBN: 978-3-642-10631-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics