Skip to main content

Unbalanced Graph Cuts

  • Conference paper
Algorithms – ESA 2005 (ESA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3669))

Included in the following conference series:

Abstract

We introduce the Minimum-size bounded-capacity cut (MinSBCC) problem, in which we are given a graph with an identified source and seek to find a cut minimizing the number of nodes on the source side, subject to the constraint that its capacity not exceed a prescribed bound B. Besides being of interest in the study of graph cuts, this problem arises in many practical settings, such as in epidemiology, disaster control, military containment, as well as finding dense subgraphs and communities in graphs.

In general, the MinSBCC problem is NP-complete. We present an efficient \((\frac{1}{{\rm \lambda}},\frac{1}{1-{\rm \lambda}})\)-bicriteria approximation algorithm for any 0 < λ < 1; that is, the algorithm finds a cut of capacity at most \(\frac{1}{{\rm \lambda}}B\), leaving at most \(\frac{1}{1-{\rm \lambda}}\) times more vertices on the source side than the optimal solution with capacity B. In fact, the algorithm’s solution either violates the budget constraint, or exceeds the optimal number of source-side nodes, but not both. For graphs of bounded treewidth, we show that the problem with unit weight nodes can be solved optimally in polynomial time, and when the nodes have weights, approximated arbitrarily well by a PTAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. In: STOC (2004)

    Google Scholar 

  3. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. Journal of Algorithms, 34 (2000)

    Google Scholar 

  4. Bailey, N.: The Mathematical Theory of Infectious Diseases and its Applications. Hafner Press, New York (1975)

    MATH  Google Scholar 

  5. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. on Computing 25, 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Develin, M., Hartke, S.G.: Fire containment in grids of dimension three and higher (2004) (Submitted)

    Google Scholar 

  7. Eubank, S., Guclu, H., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Toroczkai, Z., Wang, N.: Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184 (2004)

    Article  Google Scholar 

  8. Eubank, S., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Wang, N.: Structure of social contact networks and their impact on epidemics. AMS-DIMACS Special Volume on Epidemiology

    Google Scholar 

  9. Eubank, S., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Wang, N.: Structural and algorithmic aspects of massive social networks. In: SODA (2004)

    Google Scholar 

  10. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. In: STOC (1993)

    Google Scholar 

  11. Feige, U., Krauthgamer, R.: A polylogarithmic approximation of the minimum bisection. SIAM J. on Computing 31, 1090–1118 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Feige, U., Krauthgamer, R., Nissim, K.: On cutting a few vertices from a graph. Discrete Applied Mathematics 127, 643–649 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Feige, U., Seltser, M.: On the densest k-subgraph problem. Technical report, The Weizmann Institute, Rehovot (1997)

    Google Scholar 

  14. Flake, G., Lawrence, S., Giles, C.L., Coetzee, F.: Self-organization of the web and identification of communities. IEEE Computer, 35 (2002)

    Google Scholar 

  15. Flake, G., Tarjan, R., Tsioutsiouliklis, K.: Graph clustering techniques based on minimum cut trees. Technical Report 2002-06, NEC, Princeton (2002)

    Google Scholar 

  16. Ford, L., Fulkerson, D.: Maximal flow through a network. Can. J. Math. (1956)

    Google Scholar 

  17. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. on Computing 18, 30–55 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM J. on Computing (1996)

    Google Scholar 

  19. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley, Reading (2005)

    Google Scholar 

  20. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for emerging cyber-communities. In: WWW (1999)

    Google Scholar 

  21. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehard and Winston (1976)

    MATH  Google Scholar 

  22. Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM, 46 (1999)

    Google Scholar 

  23. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA (2004)

    Google Scholar 

  24. Shmoys, D.: Cut problems and their application to divide-and-conquer. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-hard problems, pp. 192–235. PWD Publishing (1995)

    Google Scholar 

  25. Svitkina, Z., Tardos, E.: Min-max multiway cut. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 207–218. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hayrapetyan, A., Kempe, D., Pál, M., Svitkina, Z. (2005). Unbalanced Graph Cuts. In: Brodal, G.S., Leonardi, S. (eds) Algorithms – ESA 2005. ESA 2005. Lecture Notes in Computer Science, vol 3669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561071_19

Download citation

  • DOI: https://doi.org/10.1007/11561071_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29118-3

  • Online ISBN: 978-3-540-31951-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics