Skip to main content

On Microbiocorrosion

  • Chapter
  • First Online:
Advances in Stromatolite Geobiology

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 131))

Abstract

Destruction of rocks and minerals by biological activities has been termed bioerosion (Neumann 1966). It includes mechanical as well as chemical effects, i.e. bioabrasion and biocorrosion (Schneider 1976; Golubic and Schneider 1979). However both processes often co-occur; they are functionally interconnected and mutually supportive. Biocorrosion can result from the activity of macro- or micro- organisms and thus is called macrobiocorrosion and microbiocorrosion. Microbiocorrosion can also be closely associated with microbial rock formation and consolidation in stromatolitic structures (Reid et al. 2000; Macintyre et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Golubic S, Garcia-Pichel F, Camoin GF, Sprachta S (2003) Characterization of microbialite-forming Cyanobacteria in a tropical lagoon: Tikehau Atoll, Tuamotu, French Polynesia. Journal of Phycology 39:862–873

    Article  Google Scholar 

  • Abed RMM, Palinska KA, Camoin G, Golubic S (2006) Common evolutionary origin of planktonic and benthic nitrogen-fixing oscillatoriacean cyanobacteria from tropical oceans. FEMS Microbiology Letters 260:171–177

    Article  Google Scholar 

  • Abed RMM, Kohls K, Schoon R, Scherf A-K, Schacht M, Palinska KA, Rullköter J, Golubic S (2008) Lipid biomarkers, pigments and cyanobacterial diversity of microbial mats across intertidal flats of the arid coast of the Arabian Gulf (Abu Dhabi, UAE). FEMS Microbiological Ecology 65:449–462

    Article  Google Scholar 

  • Alexandersson ET (1975) Marks of unknown carbonate-decomposing organelles in cyanophyte borings. Nature 254:212–238

    Google Scholar 

  • Al-Thukair AA, Golubic S (1991) New endolithic cyanobacteria from the Arabian Gulf. I. Hyella immanis sp. nov. Journal of Phycology 27:766–780

    Article  Google Scholar 

  • Carreiro-Silva M, McClanahan TR, Kiene WE (2005) The role of inorganic nutrients and herbivory in controlling microbioerosion of carbonate substratum. Coral Reefs 24:214–221

    Article  Google Scholar 

  • Carreiro-Silva M, McClanahan TR, Kiene WE (2009) Effect of inorganic nutrients and organic matter on microbial euendolithic community composition and microbioerosion rates. Marine Ecology Progress Series 392:1–15

    Article  Google Scholar 

  • Chacón E, Berrendero E, Garcia-Pichel F (2006) Biogeological signatures of microboring cyanobacterial communities in marine carbonates from Cabo Rojo, Puerto Rico. Sedimentary Geology 185:215–228

    Article  Google Scholar 

  • Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M (1995) Bioerosion rates on coral reefs: interaction between macroborers, microborers and grazers (Moorea, French Polynesia). Palaeogeography, Palaeoclimatology, Palaeoecology 113:189–198

    Article  Google Scholar 

  • Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M, Cuet P (2002) The effects of eutrophication-related alterations to coral reef communities on agents and rates of bioerosion (Reunion Island, Indian Ocean). Coral Reefs 21:375–390

    Google Scholar 

  • Chazottes V, Cabioch G, Golubic S, Radtke G (2009) Bathymetric zonation of modern microborers in dead coral substrates from New Caledonia – Implications for paleodepth reconstructions in Holocene corals. Palaeogeography, Palaeoclimatology, Palaeoecology 280:456–468

    Article  Google Scholar 

  • De la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Molecular characterization of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Applied Environmental Microbiology 69:3858–3867

    Article  Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology 13:429–338

    Article  Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S (2000) The global carbon cycle: a test of our knowledge of Earth as a system. Science 290:291–296

    Article  Google Scholar 

  • Garcia-Pichel F (2006) Plausible mechanisms for the boring on carbonates by microbial autotrophs. Sedimentary Geology 185:205–213

    Article  Google Scholar 

  • Garcia-Pichel F, Al-Horani F, Ludwig R, Farmer J, Wade B (2004) Balance between calcification and bioerosion in modern stromatolites. Geobiology 2:49–57

    Article  Google Scholar 

  • Golubic S (1969) Distribution, taxonomy and boring patterns of marine endolithic algae. American Zoologist 9:747–751

    Google Scholar 

  • Golubic S, Schneider J (1979) Carbonate dissolution. In: Trudinger PA, Swaine DJ (eds) Biogeochemical Cycling of Mineral-forming Elements. Elsevier, Amsterdam, pp 107–129

    Chapter  Google Scholar 

  • Golubic S, Schneider J (2003) Microbial endoliths as internal biofilms. In: Krumbein WE, Dornieden T, Volkmann M (eds) Fossil and Recent biofilms. Kluwer Academic, Dordrecht, pp 249–263

    Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. Journal of Sedimentary Petrology 51:475–478

    Google Scholar 

  • Golubic S, Violante C, Ferreri V, D'Argenio B (1993) ***Algal control and early diagenesis in Quaternary travertine formation (Rocchetta a Volturno, central Apennines). In: Baratolo F, De Castro P, Parente M (eds) Studies on Fossil Benthic Algae. Bolletino, Societa Paleontologica Italiana, Spec 1:231–247

    Google Scholar 

  • Golubic S, Violante C, D’Argenio B (1995) Travertine biota: a record of seasonal changes. In: Ubertini L, Castelli F, Bras RL (eds) Climate Change and Hydrogeological Hazards in the Mediterranean Area. Natural Research Council, Italy, pp 25–30

    Google Scholar 

  • Golubic S, Violante C, Plenkovic A, Grgasovic T (2008) Travertines and calcareous tufa deposits: an insight into diagenesis. Geologica Croatica 61:363–378

    Google Scholar 

  • Hatch WI (1980) The implication of carbonic anhydrase in the physiological mechanism of penetration of carbonate substrata by the marine burrowing sponge Cliona celata (Demospongiae). Biological Bulletin 159:135–147

    Article  Google Scholar 

  • Heitz E, Flemming H-C, Sand W (eds) (1996) Microbially Influenced Corrosion of Materials. Springer, Berlin, pp 475

    Google Scholar 

  • Kiene WE, Hutchings PA (1994) Bioerosion experiments at Lizard Island, Great Barrier Reef. Coral Reefs 13:91–98

    Article  Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Pantazidou A (1996). On the euendolithic genus Solentia Ercegovic (Cyanophyta/Cyanobacteria). Algological Studies 83:108–127

    Google Scholar 

  • Macintyre IG, Prufert-Bebout L, Reid RP (2000) The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology 47:915–921

    Article  Google Scholar 

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge Cliona lampa. Limnology and Oceanography 11:92–108

    Article  Google Scholar 

  • Ortega-Morales BO, Narváez-Zapata JA, Schmalenberger A, Sosa-Loó A, Tebbe CC (2004) Biofilms fouling ancient limestone Mayan monuments in Uxmal, Mexico: a cultivation-independent analysis. Biofilms 1:79–90

    Article  Google Scholar 

  • Perry CT (1998) Grain susceptibility to the effects of microboring, implications for the preservation of skeletal carbonates. Sedimentology 45:39–51

    Article  Google Scholar 

  • Radtke G, Golubic S (2010) Microbial euendolithic assemblages and microborings in intertidal and shallow marine habitats: insight in cyanobacterial speciation. In: Reitner J, Queric, N-V, Arp G (eds) Advances in Stromatolite Geobiology. Lecture Notes in Earth Sciences 131, Springer, Berlin, pp 213–241

    Google Scholar 

  • Radtke G, Le Campion-Alsumard T, Golubic S (1996) Microbial assemblages of the bioerosional “notch” along tropical limestone coasts. Algological Studies 83:469–482

    Google Scholar 

  • Rasheed M, Wild C, Franke U, Huettel M. (2004) Benthic photosynthesis and oxygen consumption in permeable carbonate sediments at Heron Island, Great Barrier Reef, Australia. Estuarine, Coastal and Shelf Science 59:139–150

    Article  Google Scholar 

  • Reaka-Kudla ML, Feingold JS, Glynn W (1996) Experimental studies of rapid bioerosion of coral reefs in the Galapagos Islands. Coral Reefs 15:101–107

    Google Scholar 

  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz CP, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992

    Article  Google Scholar 

  • Reitner J (1993) Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia) – Formation and Concepts. Facies 29:3–40

    Article  Google Scholar 

  • Reitner J, Thiel V, Zankl H, Michaelis W, Wörheide G, Gautret P (2000) Organic and biochemical pattern in cryptic microbialites. In: Riding RE, Awramik SM (eds) Microbial Sediments. Springer, Berlin, 149–160

    Google Scholar 

  • Risk MJ, Sammarco PW, Edinger EN (1995) Bioerosion in Acropora across the continental shelf of the Great Barrier Reef. Coral Reefs 14:79–86

    Article  Google Scholar 

  • Roux W (1887) Über eine in Knochen lebende Gruppe von Fadenpilzen (Mycelites ossifragus). Zeitschrift für wissenschaftliche Zoologie 45:227–254

    Google Scholar 

  • Ruttner F (1962) Grundriss der Limnologie, 3rd ed. Walter de Gruyter, Berlin, pp 332

    Google Scholar 

  • Sammarco PW, Risk MJ (1990) Large-scale patterns in internal bioerosion of Porites: cross continental shelf trends on the Great Barrier Reef. Marine Ecology Progress Series 59:145–156

    Article  Google Scholar 

  • Schneider J (1976) Biological and inorganic factors in the destruction of limestone coasts. Contributions Sedimentology 6:1–112

    Google Scholar 

  • Schneider J, Le Campion-Alsumeard T (1999) Construction and destruction of carbonates by marine and freshwater cyanobacteria. European Journal Phycology 34:417–426

    Article  Google Scholar 

  • Schneider J, Torunski H (1983) Biokarst on limestone coasts, morphogenesis and sediment production. Marine Ecology 4:45–63

    Article  Google Scholar 

  • Scoffin TP (1992) Taphonomy of coral reefs: a review. Coral Reefs 11:57–77

    Article  Google Scholar 

  • Scoffin TP, Brandshaw C (2000) The taphonomic significance of endoliths in dead versus live coral skeletons. Palaios 15:248–254

    Article  Google Scholar 

  • Tribollet A (2008a) Dissolution of dead corals by euendolithic microorganisms across the northern Great Barrier Reef (Australia). Microbial Ecology 55:569–580

    Article  Google Scholar 

  • Tribollet A (2008b) The boring microflora in modern coral reef ecosystems: a review of its roles. In: Wisshak M, Tapanila L (eds) Current Developments in Bioerosion. Springer, Berlin, 67–94

    Chapter  Google Scholar 

  • Tribollet A, Golubic S (2005) Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24:422–434

    Article  Google Scholar 

  • Tribollet A, Payri C (2001) Bioerosion of coralline alga Hydrolithon onkodes by microborers in the coral reefs of Moorea, French Polynesia. Oceanologica Acta 24:329–342

    Article  Google Scholar 

  • Tribollet A, Decherf G, Hutchings PA, Peyrot-Clausade M (2002) Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): importance of microborers. Coral Reefs 21:424–432

    Google Scholar 

  • Tribollet A, Langdon C, Golubic S, Atkinson M (2006) Endolithic microflora are major primary producers in dead carbonate substrates of Hawaiian coral reefs. Journal of Phycology 42:292–303

    Article  Google Scholar 

  • Tribollet A, Godinot C, Atkinson M, Langdon C (2009) Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Global Biogeochemical Cycles 23:1–7

    Google Scholar 

  • Underwood CJ, Mitchell SF, Veltkamp CJ (1999) Microborings in mid-Cretaceous fish teeth. Proceedings Yorkshire Geological Society 52:269–274

    Article  Google Scholar 

  • Verrecchia EP, Loisy C, Braissant O, Gorbushina AA (2003) The role of fungal biofilm and networks in the terrestrial calcium carbonate cycle. In: Krumbein WE, Dornieden T, Volkmann M (eds) Fossil and Recent biofilms. Kluwer Academic, Dordtrecht, 363–369

    Google Scholar 

  • Videla HA (1996) Manual of Biocorrosion. CRC Lewis Publishers, Boca Raton, pp 273

    Google Scholar 

  • Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. International Microbiology 8:169–180

    Google Scholar 

  • Vogel K, Gektidis M, Golubic S, Kiene WE, Radtke G (2000) Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: implications for paleoecological reconstructions. Lethaia 33:190–204

    Article  Google Scholar 

  • Walker JJ, Pace, NR (2007a) Phylogenetic composition of Rocky Mountain endolithic microbial ecosystems. Applied Environmental Microbiology 73:3497–3504

    Article  Google Scholar 

  • Walker JJ, Pace NR (2007b) Endolithic microbial ecosystems. Annual Reviews Microbiology 61:331–347

    Article  Google Scholar 

  • Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014

    Article  Google Scholar 

  • Wild C, Laforsch C, Huettel M. (2006) Detection and enumeration of microbial cells within highly porous calcareous reef sands. Marine and Freshwater Research 57:415–420

    Article  Google Scholar 

  • Zhang Y, Golubic S (1987) Endolithic microfossils (cyanophyta) from early Proterozoic stromatolites, Hebei, China. Acta Micropaleontologica Sinica 4:1–12

    Google Scholar 

  • Zhang X-G, Pratt BR (2008) Microborings in Early Cambrian phosphatic and phosphatized fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 267:155–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Tribollet .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Tribollet, A., Golubic, S., Radtke, G., Reitner, J. (2011). On Microbiocorrosion. In: Advances in Stromatolite Geobiology. Lecture Notes in Earth Sciences, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10415-2_17

Download citation

Publish with us

Policies and ethics