Skip to main content

A Predictive Collision Avoidance Model for Pedestrian Simulation

  • Conference paper
Motion in Games (MIG 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5884))

Included in the following conference series:

Abstract

We present a new local method for collision avoidance that is based on collision prediction. In our model, each pedestrian predicts possible future collisions with other pedestrians and then makes an efficient move to avoid them. Experiments show that the new approach leads to considerably shorter and less curved paths, ensuring smooth avoidance behaviour and visually compelling simulations. The method reproduces emergent behaviour like lane formation that have been observed in real crowds. The technique is easy to implement and is fast, allowing the simulation in real time of crowds of thousands of pedestrians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Transactions on Graphics 25(3), 1160–1168 (2006)

    Article  Google Scholar 

  2. Lamarche, F., Donikian, S.: Crowd of virtual humans: a new approach for real time navigation in complex and structured environments. Computer Graphics Forum 23, 509–518 (2004)

    Article  Google Scholar 

  3. Geraerts, R., Overmars, M.: The corridor map method: A general framework for real-time high-quality path planning. Computer Animation and Virtual Worlds 18, 107–119 (2007)

    Article  Google Scholar 

  4. Sud, A., Gayle, R., Andersen, E., Guy, S., Lin, M., Manocha, D.: Real-time navigation of independent agents using adaptive roadmaps. In: ACM symposium on Virtual reality software and technology, pp. 99–106 (2007)

    Google Scholar 

  5. Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graphical Models 69(5-6), 246–274 (2007)

    Article  Google Scholar 

  6. Reynolds, C.W.: Steering behaviors for autonomous characters. In: The proceedings of Game Developers Conference, pp. 763–782 (1999)

    Google Scholar 

  7. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Physical Review E 51, 4282–4286 (1995)

    Article  Google Scholar 

  8. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science 39(1) (2005)

    Google Scholar 

  9. Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: SCA 2007: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 99–108 (2007)

    Google Scholar 

  10. Paris, S., Pettré, J., Donikian, S.: Pedestrian reactive navigation for crowd simulation: a predictive approach. Computer Graphics Forum 26(3), 665–674 (2007)

    Article  Google Scholar 

  11. van den Berg, J.P., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: ICRA, pp. 1928–1935. IEEE, Los Alamitos (2008)

    Google Scholar 

  12. Pettré, J., Ondrej, J., Olivier, A.H., Crétual, A., Donikian, S.: Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: SCA 2009: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 189–198 (2009)

    Google Scholar 

  13. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Computer Graphics Forum 26, 655–664 (2007)

    Article  Google Scholar 

  14. Lee, K., Choi, M., Hong, Q., Lee, J.: Group behavior from video: a data-driven approach to crowd simulation. In: SCA 2007: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 109–118 (2007)

    Google Scholar 

  15. Goffman, E.: Relations in public: microstudies of the public order. Basic books, New York (1971)

    Google Scholar 

  16. Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley, Reading (1949)

    Google Scholar 

  17. Singh, S., Kapadia, M., Faloutsos, P., Reinman, G.: Steerbench: a benchmark suite for evaluating steering behaviors. Computer Animation and Virtual Worlds (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karamouzas, I., Heil, P., van Beek, P., Overmars, M.H. (2009). A Predictive Collision Avoidance Model for Pedestrian Simulation. In: Egges, A., Geraerts, R., Overmars, M. (eds) Motion in Games. MIG 2009. Lecture Notes in Computer Science, vol 5884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10347-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10347-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10346-9

  • Online ISBN: 978-3-642-10347-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics