Skip to main content

Root Water Transport Under Waterlogged Conditions and the Roles of Aquaporins

  • Chapter
  • First Online:
Waterlogging Signalling and Tolerance in Plants

Abstract

Water flow through plants roots can be affected when the soil is waterlogged and oxygen deficient. For species not adapted to these conditions, water flow usually decreases within minutes to days, depending on the oxygen concentration in the root and rhizosphere. During this time, the decrease in water flow is attributed to decreased root hydraulic conductance, through an inhibition of plasma-membrane aquaporins. There is increasing evidence that aquaporins may also be involved in the transport of gases, end products of anaerobic respiration, and signalling molecules; all of which are relevant to oxygen-deficient conditions. Eventually, primary roots die if continually starved of oxygen, but may be replaced with adventitious roots that can maintain the supply of water to the shoot. Here, we review the effects of waterlogging and oxygen deficiency on root hydraulic conductance and aquaporin activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar EA, Turner DW et al (2003) Oxygen distribution and movement, respiration and nutrient loading in banana roots (Musa spp. L.) subjected to aerated and oxygen-depleted environments. Plant Soil 253(1):91–102

    Article  CAS  Google Scholar 

  • Albrecht G, Mustroph A (2003) Localization of sucrose synthase in wheat roots: increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta 217:252–260

    PubMed  CAS  Google Scholar 

  • Alleva K, Niemietz CM et al (2006) Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations. J Exp Bot 57(3):609–621

    Article  PubMed  CAS  Google Scholar 

  • Ampilogova Y, Zhestkova I et al (2006) Redox modulation of osmotic water permeability in plasma membranes isolated from roots and shoots of pea seedlings. Russ J Plant Physiol 53(5):622–628

    Article  CAS  Google Scholar 

  • Amtmann A, Blatt MR (2009) Regulation of macronutrient transport. New Phytol 181(1):35–52

    Article  PubMed  CAS  Google Scholar 

  • Andersen P, Lombard P et al (1984) Effect of root anaerobiosis on the water relations of several Pyrus species. Physiol Plant 62(2):245–252

    Article  Google Scholar 

  • Armstrong J, Armstrong W (2005) Rice: sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot 96(4):625–638

    Article  PubMed  CAS  Google Scholar 

  • Armstrong W, Beckett PM et al (1991) Modelling and other aspects of root aeration. In: Jackson MB, Davies DD, Lambers H (eds) Plant Life Under Oxygen Stress. SPB Academic, The Hague, The Netherlands, pp 267–282

    Google Scholar 

  • Atwell BJ (1991) Factors which affect the growth of grain legumes on a solonized brown soil. I. Genotypic responses to soil physical factors. Aust J Agric Res 42(1):95–105

    Google Scholar 

  • Azad AK, Sawa Y et al (2004) Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals. Plant Cell Physiol 45(5):608–617

    Article  PubMed  CAS  Google Scholar 

  • Azaizeh H, Gunsé B et al (1992) Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings. Plant Physiol 99:886–894

    Article  PubMed  CAS  Google Scholar 

  • Azaizeh H, Steudle E (1991) Effects of salinity on water transport of excised maize (Zea mays L.) roots. Plant Physiol 97:1136–1145

    Article  PubMed  CAS  Google Scholar 

  • Babourina O, Hawkins B et al (2001) K+ transport by Arabidopsis root hairs at low pH. Funct Plant Biol 28(7):637–643

    Article  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59(1):313–339

    Article  PubMed  CAS  Google Scholar 

  • Barlow PW (1994) The origin, diversity and biology of shoot-borne roots. In: Davis TD, Haissig BE (eds) Biology of adventitious root formation, vol 62. Plenum, New York

    Google Scholar 

  • Baxter-Burrell A, Yang Z et al (2002) RopGAP4-Dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296(5575):2026–2028

    Article  PubMed  CAS  Google Scholar 

  • Beitz E, Wu B et al (2006) Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci USA 103(2):269–274

    Article  PubMed  CAS  Google Scholar 

  • Bertl A, Kaldenhoff R (2007) Function of a separate NH3-pore in Aquaporin TIP2;2 from wheat. FEBS lett 581(28):5413–5417

    Article  PubMed  CAS  Google Scholar 

  • Biemelt S, Keetman U et al (2000) Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant Cell Environ 23(2):135–144

    Article  CAS  Google Scholar 

  • Bienert G, Thorsen M et al (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6(1):26

    Article  PubMed  CAS  Google Scholar 

  • Bienert GP, Moller ALB et al (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282(2):1183–1192

    Article  PubMed  CAS  Google Scholar 

  • Birner TP, Steudle E (1993) Effects of anaerobic conditions on water and solute relations, and on active transport in roots of maize (Zea mays L.). Planta 190:474–483

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E et al (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2):179–194

    Article  PubMed  CAS  Google Scholar 

  • Blokhina OB, Virolainen E et al (2000) Antioxidant status of anoxia-tolerant and -intolerant plant species under anoxia and reaeration. Physiol Plant 109(4):396–403

    Article  CAS  Google Scholar 

  • Boursiac Y, Boudet J et al (2008) Stimulus-induced down regulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. Plant J 56(2):207–218

    Article  PubMed  CAS  Google Scholar 

  • Bradford KJ, Hsiao TC (1982) Stomatal behaviour and water relations of waterlogged tomato plants. Plant Physiol 70:1508–1513

    Article  PubMed  CAS  Google Scholar 

  • Bramley H (2006) Water flow in the roots of three crop species: the influence of root structure, aquaporin activity and waterlogging. PhD thesis, Plant Biology, The University of Western Australia, Crawley, WA, Australia

    Google Scholar 

  • Bramley H, Turner DW et al (2007) Water flow in the roots of crop species: The influence of root structure, aquaporin activity, and waterlogging. Adv Agron 96:133–196

    Article  CAS  Google Scholar 

  • Bramley H, Turner NC et al (2009) Roles of morphology, anatomy and aquaporins in determining contrasting hydraulic behavior of roots. Plant Physiol 150:1–17

    Article  CAS  Google Scholar 

  • Bramley H, Turner NC et al (2010) Contrasting influence of mild hypoxia on hydraulic properties of cells and roots of wheat and lupin. Funct Plant Biol (in press)

    Google Scholar 

  • Britto D, Kronzucker H (2006) Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trends Plant Sci 11:529–534

    Article  PubMed  CAS  Google Scholar 

  • Britto D, Ruth T et al (2004) Cellular and whole-plant chloride dynamics in barley: insights into chloride-nitrogen interactions and salinity responses. Planta 218:615–622

    Article  PubMed  CAS  Google Scholar 

  • Buwalda F, Thomson CJ et al (1988) Hypoxia induces membrane depolarization and potassium loss from wheat roots but does not increase their permeability to sorbitol. J Exp Bot 39(206):1169–1183

    Article  CAS  Google Scholar 

  • Cannell RQ, Jackson MB (1981) Alleviating aeration stresses. In: Arkin GF, Taylor HM (eds) Modifying the root environment to reduce crop stress. American Society of Agricultural Engineers, St. Joseph, Michigan, pp 141–192

    Google Scholar 

  • Chaumont F, Barrieu F et al (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Chaumont F, Barrieu F et al (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125(3):1206–1215

    Article  PubMed  CAS  Google Scholar 

  • Choi W-G, Roberts DM (2007) Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress. J Biol Chem 282(33):24209–24218

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels MJ, Agre P (1994) Aquaporins: water channel proteins of plant and animal cells. Trends Biochem Sci 19:421–425

    Article  PubMed  CAS  Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  • Colmer TD, Bloom AJ (1998) A comparison of NH +4 and NO −3 net fluxes along roots of rice and maize. Plant Cell Environ 21(2):240–246

    Article  CAS  Google Scholar 

  • Danielson J, Johanson U (2008) Unexpected complexity of the Aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8(1):45

    Article  PubMed  CAS  Google Scholar 

  • Day DA, Poole PS et al (2001) Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Cell Mol Life Sci 58(1):61–71

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Shabala SN et al (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant J 49(3):377–386

    Article  PubMed  CAS  Google Scholar 

  • Dennis ES, Dolferus R et al (2000) Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot 51(342):89–97

    Article  PubMed  CAS  Google Scholar 

  • Dordas C (2009) Nonsymbiotic hemoglobins and stress tolerance in plants. Plant Sci 176(4):433–440

    Article  CAS  Google Scholar 

  • Dracup M, Turner NC et al (1998) Responses to abiotic stress. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins As Crop Plants: Biology, Production and Utilisation. CAB International, Oxon, pp 227–262

    Google Scholar 

  • Drew MC (1992) Soil aeration and plant root metabolism. Soil Sci 154(4):259–268

    Article  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  PubMed  CAS  Google Scholar 

  • Dynowski M, Schaaf G et al (2008) Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem J 414(1):53–61

    Article  PubMed  CAS  Google Scholar 

  • Echevarria M, Munoz-Cabello AM et al (2007) Development of cytosolic hypoxia and HIF stabilization are facilitated by aquaporin 1 expression. J Biol Chem 282(41):30207–30215

    Article  PubMed  CAS  Google Scholar 

  • Else MA, Coupland D et al (2001) Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap. Physiol Plant 111:46–54

    Article  CAS  Google Scholar 

  • Enstone DE, Peterson CA (2005) Suberin lamella development in maize seedling roots grown in aerated and stagnant conditions. Plant Cell Environ 28:444–455

    Article  Google Scholar 

  • Etherington JR (1984) Comparative studies of plant growth and distribution in relation to waterlogging: X. Differential formation of adventitious roots and their experimental excision in Epilobium Hirsutum and Chamerion Angustifolium. J Ecol 72(2):389–404

    Article  Google Scholar 

  • Everard JD, Drew MC (1989) Mechanisms controlling changes in water movement through the roots of Helianthus annuus L. during continuous exposure to oxygen deficiency. J Exp Bot 40(210):95–104

    Article  Google Scholar 

  • Fan M, Bai R et al (2007) Aerenchyma formed under phosphorus deficiency contributes to the reduced root hydraulic conductivity in maize roots. J Integr Biol 49(5):598–604

    Article  Google Scholar 

  • Felle HH (2005) pH regulation in anoxic plants. Ann Bot 96(4):519–532

    Article  PubMed  CAS  Google Scholar 

  • Fetter K, Van Wilder V et al (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16(1):215–228

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, Kaldenhoff R (2008) On the pH regulation of plant aquaporins. J Biol Chem 283(49):33889–33892

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Ribas-Carbo M et al (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48(3):427–439

    Article  PubMed  CAS  Google Scholar 

  • Forrest K, Bhave M (2008) The PIP and TIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features. Funct Integr Genomics 8(2):115–133

    Article  PubMed  CAS  Google Scholar 

  • Fouquet R, Léon C et al (2008) Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep 27(9):1541–1550

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Bailey-Serres J (2008) Ethylene – a key regulator of submergence responses in rice. Plant Sci 175(1–2):43–51

    Article  CAS  Google Scholar 

  • Garnczarska M (2005) Response of the ascorbate-glutathione cycle to re-aeration following hypoxia in lupine roots. Plant Physiol Biochem 43(6):583–590

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite AJ, Steudle E et al (2006) Water uptake by roots of Hordeum marinum: formation of a barrier to radial O2 loss does not affect root hydraulic conductivity. J Exp Bot 57(3):655–664

    Article  PubMed  CAS  Google Scholar 

  • Gerbeau P, Amodeo G et al (2002) The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J 30(1):71–81

    Article  PubMed  CAS  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  CAS  Google Scholar 

  • Gibbs J, Turner DW et al (1998) Response to oxygen deficiency in primary maize roots. II. Development of oxygen deficiency in the stele has limited short-term impact on radial hydraulic conductivity. Aust J Plant Physiol 25:759–763

    Article  CAS  Google Scholar 

  • Gloser V, Zwieniecki MA et al (2007) Dynamic changes in root hydraulic properties in response to nitrate availability. J Exp Bot 58(10):2409–2415

    Article  PubMed  CAS  Google Scholar 

  • Goggin DE, Colmer TD (2005) Intermittent anoxia induces oxidative stress in wheat seminal roots: assessment of the antioxidant defence system, lipid peroxidation and tissue solutes. Funct Plant Biol 32(6):495–506

    Article  CAS  Google Scholar 

  • Gorska A, Ye Q et al (2008a) Nitrate control of root hydraulic properties in plants: translating local information to whole plant response. Plant Physiol 148(2):1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Gorska A, Zwieniecka A et al (2008b) Nitrate induction of root hydraulic conductivity in maize is not correlated with aquaporin expression. Planta 228(6):989–998

    Article  PubMed  CAS  Google Scholar 

  • Gout E, Boisson AM et al (2001) Origin of the cytoplasmic pH changes during anaerobic stress in higher plant cells. Carbon-13 and phosphorous-31 nuclear magnetic resonance studies. Plant Physiol 125(2):912–925

    Article  PubMed  CAS  Google Scholar 

  • Grabov A, Bottger M (1994) Are redox reactions involved in regulation of K+ channels in the plasma membrane of Limnobium stoloniferum root hairs? Plant Physiol 105(3):927–935

    PubMed  CAS  Google Scholar 

  • Greacen EL, Ponsana P et al (1976) Resistance to water flow in the roots of cereals. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life, vol 19. Springer, Berlin, pp 86–100

    Google Scholar 

  • Greenway H, Armstrong W et al (2006) Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Ann Bot 98(1):9–32

    Article  PubMed  CAS  Google Scholar 

  • Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol 30:999

    Article  CAS  Google Scholar 

  • Greenway H, Waters I et al (1992) Effects of anoxia on uptake and loss of solutes in roots of wheat. Aust J Plant Physiol 19:233–247

    Article  CAS  Google Scholar 

  • Guenther JF, Chanmanivone N et al (2003) Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell 15(4):981–991

    Article  PubMed  CAS  Google Scholar 

  • Hanba YT, Shibasaka M et al (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimillation in the leaves of transgenic rice plants. Plant Cell Physiol 45(5):521–529

    Article  PubMed  CAS  Google Scholar 

  • Harrington CA (1987) Responses of red alder and black cottonwood seedlings to flooding. Physiol Plant 69(1):35–48

    Article  Google Scholar 

  • Hartje S, Zimmermann S et al (2000) Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta 210(5):723–731

    Article  PubMed  CAS  Google Scholar 

  • Hedfalk K, Tornroth-Horsefield S et al (2006) Aquaporin gating. Curr Opin Struct Biol 16(4):447–456

    Article  PubMed  CAS  Google Scholar 

  • Henzler T, Steudle E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J Exp Bot 51(353):2053–2066

    Article  PubMed  CAS  Google Scholar 

  • Henzler T, Ye Q et al (2004) Oxidative gating of water channels (aquaporins) in Chara by hydroxyl radicals. Plant Cell Environ 27:1184–1195

    Article  CAS  Google Scholar 

  • Hohl M, Schopfer P (1995) Rheological analysis of viscoelastic cell wall changes in maize coleoptiles as affected by auxin and osmotic stress. Physiol Plant 94(3):499–505

    Article  CAS  Google Scholar 

  • Holm LM, Jahn TP et al (2005) NH3 and NH4 + permeability in aquaporin-expressing Xenopus oocytes. Pflugers Archiv 450(6):415–428

    Article  PubMed  CAS  Google Scholar 

  • Horemans N, Asard H et al (1998) Carrier mediated uptake of dehydroascorbate into higher plant plasma membrane vesicles shows trans-stimulation. FEBS lett 421(1):41–44

    Article  PubMed  CAS  Google Scholar 

  • Horemans N, Foyer CH et al (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5(6):263–267

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Colmer TD et al (2008) Does anoxia tolerance involve altering the energy currency towards PPi? Trends Plant Sci 13(5):221–227

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Hill RD (2009) Plant mitochondrial function during anaerobiosis. Ann Bot 103(2):259–268

    Article  PubMed  CAS  Google Scholar 

  • Insalud N, Bell RW et al (2006) Morphological and physiological responses of rice (Oryza sativa) to limited phosphorus supply in aerated and stagnant solution culture. Ann Bot 98(5):995–1004

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB (2002) Long-distance signalling from roots to shoots assessed: the flooding story. J Exp Bot 53(367):175–181

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB, Davies WJ et al (1996) Pressure-flow relationships, xylem solutes and root hydraulic conductance in flooded tomato plants. Ann Bot 77:17–24

    Article  Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90(3):301–313

    Article  PubMed  CAS  Google Scholar 

  • Jensen MX, Rvthlisberger U et al (2005) Hydroxide and proton migration in aquaporins. Biophys J 89(3):1744–1759

    Article  PubMed  CAS  Google Scholar 

  • Johanson U, Gustavsson S (2002) A new subfamily of major intrinsic proteins in plants. Mol Biol Evol 19(4):456–461

    PubMed  CAS  Google Scholar 

  • Johanson U, Karlsson M et al (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126(4):1358–1369

    Article  PubMed  CAS  Google Scholar 

  • Johansson I, Karlsson M et al (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10(3):451–459

    Article  PubMed  CAS  Google Scholar 

  • Johansson I, Larsson C et al (1996) The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Plant Cell 8:1181–1191

    Article  PubMed  CAS  Google Scholar 

  • Kalashnikov Y, Balakhnina T et al (1994) The effect of soil hypoxia on oxygen activation and the enzyme-system protecting barley roots and leaves against oxygen destruction. Russ J Plant Physiol 41:512–516

    Google Scholar 

  • Kamaluddin M, Zwiazek JJ (2002) Ethylene enhances water transport in hypoxic aspen. Plant Physiol 128:962–969

    Article  PubMed  CAS  Google Scholar 

  • Kato-Noguchi H (2000) Abscisic acid and hypoxic induction of anoxia tolerance in roots of lettuce seedlings. J Exp Bot 51(352):1939–1944

    Article  PubMed  CAS  Google Scholar 

  • Kato-Noguchi H, Ohashi C (2006) Effects of anoxia on amino acid levels in rice coleoptiles. Plant Prod Sci 9(4):383–387

    Article  CAS  Google Scholar 

  • Kennedy RA, Rumpho ME et al (1992) Anaerobic metabolism in plants. Plant Physiol 100(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Kirch H-H, Vera-Estrella R et al (2000) Expression of water channel proteins in Mesembryanthemum crystallinum. Plant Physiol 123(1):111–124

    Article  PubMed  CAS  Google Scholar 

  • Koncalová H (1990) Anatomical adaptations to waterlogging in roots of wetland graminoids: limitations and drawbacks. Aquat Bot 38(1):127–134

    Article  Google Scholar 

  • Kovar JL, Kuchenbuch RO (1994) Commercial importance of adventitious rooting to agronomy. In: Davis TD, Haissig BE (eds) Biology of aventitious root formation, vol 62. Plenum, New York

    Google Scholar 

  • Kozela C, Regan S (2003) How plants make tubes. Trends Plant Sci 8(4):159–164

    Article  PubMed  CAS  Google Scholar 

  • Kramer PJ (1933) The intake of water through dead root systems and its relation to the problem of absorption by transpiring plants. Am J Bot 20(7):481–492

    Article  Google Scholar 

  • Kramer PJ (1949) Plant and soil water relationships. McGraw-Hill, New York

    Google Scholar 

  • Kramer PJ (1983) Water relations of plants. Academic, New York

    Google Scholar 

  • Krugel U, Veenhoff LM et al (2008) Transport and sorting of the Solanum tuberosum sucrose transporter SUT1 is affected by posttranslational modification. Plant Cell 20(9):2497–2513

    Article  PubMed  CAS  Google Scholar 

  • Kuiper P, Walton C et al (1994) Effect of hypoxia on ion uptake by nodal and seminal wheat roots. Plant Physiol Biochem 32:267–276

    CAS  Google Scholar 

  • Libourel IGL, van Bodegom PM et al (2006) Nitrite reduces cytoplasmic acidosis under anoxia. Plant Physiol 142(4):1710–1717

    Article  PubMed  CAS  Google Scholar 

  • Liu H-Y, Sun W-N et al (2006) Co-regulation of water channels and potassium channels in rice. Physiol Plant 128(1):58–69

    Article  CAS  Google Scholar 

  • Liu L-H, Ludewig U et al (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133(3):1220–1228

    Article  PubMed  CAS  Google Scholar 

  • Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28(1):85–96

    Article  CAS  Google Scholar 

  • Ma JF, Tamai K et al (2006) A silicon transporter in rice. Nature 440(7084):688–691

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Ballesta M, Cabañero F et al (2008) Two different effects of calcium on aquaporins in salinity-stressed pepper plants. Planta 228(1):15–25

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Ballesta MC, Aparicio F et al (2003) Influence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis. J Plant Physiol 160(6):689–697

    Article  PubMed  CAS  Google Scholar 

  • Maurel C, Kado RT et al (1995) Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP. Embo J 14(13):3028–3035

    PubMed  CAS  Google Scholar 

  • Maurel C, Reizer J et al (1993) The vacuolar membrane-protein gamma-TIP creates water specific channels in Xenopus oocytes. Embo J 12(6):2241–2247

    PubMed  CAS  Google Scholar 

  • Maurel C, Tacnet F et al (1997) Purified vesicles of tobacco cell vacuolar and plasma membranes exhibit dramatically different water permeability and water channel activity. Proc Natl Acad Sci USA 94(13):7103–7108

    Article  PubMed  CAS  Google Scholar 

  • Maurel C, Verdoucq L et al (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59(1):595–624

    Article  PubMed  CAS  Google Scholar 

  • Meguro N, Tsuji H et al (2006) Analysis of expression of genes for mitochondrial aldehyde dehydrogenase in maize during submergence and following re-aeration. Breed Sci 56(4):365–370

    Article  CAS  Google Scholar 

  • Miyamoto N, Steudle E et al (2001) Hydraulic conductivity of rice roots. J Exp Bot 52(362):1835–1846

    Article  PubMed  CAS  Google Scholar 

  • Mizutani M, Watanabe S et al (2006) Aquaporin NIP2;1 is mainly localized to the ER membrane and shows root-specific accumulation in Arabidopsis thaliana. Plant Cell Physiol 47(10):1420–1426

    Article  PubMed  CAS  Google Scholar 

  • Moog PR, Janiesch P (1990) Root growth and morphology of Carex species as influenced by oxygen deficiency. Funct Ecol 4:201–208

    Article  Google Scholar 

  • Moshelion M, Becker D et al (2002) Plasma membrane aquaporins in the motor cells of Samanea saman: Diurnal and circadian regulation. Plant Cell 14(3):727–739

    Article  PubMed  CAS  Google Scholar 

  • Newman EI (1976) Water movement through root systems. Phil Trans R Soc B 273:463–478

    Article  Google Scholar 

  • Niemietz CM, Tyerman SD (1997) Characterisation of water channels in wheat root membrane vesicles. Plant Physiol 115:561–567

    PubMed  CAS  Google Scholar 

  • Nobel PS, Schulte PJ et al (1990) Water influx characteristics and hydraulic conductivity for roots of Agave deserti Engelm. J Exp Bot 41(225):409–415

    Article  Google Scholar 

  • Nyblom M, Frick A et al (2009) Structural and functional analysis of SoPIP2;1 mutants adds insight into plant aquaporin gating. J Mol Biol 387(3):653–668

    Article  PubMed  CAS  Google Scholar 

  • Ouyang L-J, Whelan J et al (1991) Protein phosphorylation stimulates the rate of malate uptake across the peribacteroid membrane of soybean nodules. FEBS Lett 293(1–2):188–190

    Article  PubMed  CAS  Google Scholar 

  • Pang JY, Newman I et al (2006) Microelectrode ion and O2 fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ 29(6):1107–1121

    Article  PubMed  CAS  Google Scholar 

  • Parent B, Hachez C et al (2009) Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiol 149(4):2000–2012

    Article  PubMed  CAS  Google Scholar 

  • Raichaudhuri A, Peng M et al (2009) Plant vacuolar ATP-binding cassette transporters that translocate folates and antifolates in vitro and contribute to antifolate tolerance in vivo. J Biol Chem 284(13):8449–8460

    Article  PubMed  CAS  Google Scholar 

  • Ranathunge K, Kotula L et al (2004) Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores. J Exp Bot 55(396):433–447

    Article  PubMed  CAS  Google Scholar 

  • Ranathunge K, Steudle E et al (2003) Control of water uptake by rice (Oryza sativa L.): role of the outer part of the root. Planta 217:193–205

    PubMed  CAS  Google Scholar 

  • Ranathunge K, Steudle E et al (2005) A new precipitation technique provides evidence for the permeability of Casparian bands to ions in young roots of corn (Zea mays L.) and rice (Oryza sativa L.). Plant Cell Environ 28(11):1450–1462

    Article  CAS  Google Scholar 

  • Rawyler A, Arpagaus S et al (2002) Impact of oxygen stress and energy availability on membrane stability of plant cells. Ann Bot 90(4):499–507

    Article  PubMed  CAS  Google Scholar 

  • Reece CF, Riha SJ (1991) Role of root systems of eastern larch and white spruce in response to flooding. Plant Cell Environ 14(2):229–234

    Article  Google Scholar 

  • Sade N, Vinocur BJ et al (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? New Phytol 181(3):651–661

    Article  PubMed  CAS  Google Scholar 

  • Sakurai J, Ishikawa F et al (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46(9):1568–1577

    Article  PubMed  CAS  Google Scholar 

  • Santosa I, Ram P et al (2007) Patterns of peroxidative ethane emission from submerged rice seedlings indicate that damage from reactive oxygen species takes place during submergence and is not necessarily a post-anoxic phenomenon. Planta 226(1):193–202

    Article  PubMed  CAS  Google Scholar 

  • Scholz-Starke J, Angeli AD et al (2004) Redox-dependent modulation of the carrot SV channel by cytosolic pH. FEBS lett 576(3):449–454

    Article  PubMed  CAS  Google Scholar 

  • Scholz-Starke J, Gambale F et al (2005) Modulation of plant ion channels by oxidizing and reducing agents. Arch Biochem Biophys 434(1):43–50

    Article  PubMed  CAS  Google Scholar 

  • Schutz K, Tyerman SD (1997) Water channels in Chara corallina. J Exp Bot 48:1511–1518

    CAS  Google Scholar 

  • Sedbrook JC, Kronebusch PJ et al (1996) Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia in Arabidopsis thaliana seedlings. Plant Physiol 111(1):243–257

    Article  PubMed  CAS  Google Scholar 

  • Segonzac C, Boyer J et al (2007) Nitrate efflux at the root plasma membrane: Identification of an Arabidopsis excretion transporter. Plant Cell 19:3760–3777

    Article  PubMed  CAS  Google Scholar 

  • Shelden MC, Howitt SM et al (2009) Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. Funct Plant Biol 36:1–14

    Article  CAS  Google Scholar 

  • Smit B, Stachowiak M (1988) Effects of hypoxia and elevated carbon dioxide concentration on water flux through Populus roots. Tree Physiol 4(2):153–165

    PubMed  Google Scholar 

  • Solaiman Z, Colmer TD et al (2007) Growth responses of cool-season grain legumes to transient waterlogging. Aust J Agric Res 58(5):406–412

    Article  Google Scholar 

  • Soukup A, Armstrong W et al (2007) Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytol 173(2):264–278

    Article  PubMed  CAS  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49(322):775–788

    Article  CAS  Google Scholar 

  • Stoimenova M, Igamberdiev A et al (2007) Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta 226(2):465–474

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah CC, Bush DS et al (1994a) Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. Plant Cell 6(12):1747–1762

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah CC, Bush DS et al (1998) Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiol 118(3):759–771

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah CC, Zhang J et al (1994b) Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings. Plant Physiol 105(1):369–376

    Article  PubMed  CAS  Google Scholar 

  • Sutka M, Alleva K et al (2005) Tonoplast vesicles of Beta vulgaris storage root show functional aquaporins regulated by protons. Biol Cell 97(11):837–846

    Article  PubMed  CAS  Google Scholar 

  • Swartz KJ (2008) Sensing voltage across lipid membranes. Nature 456(7224):891–897

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Wallace IS et al (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20(10):2860–2875

    Article  PubMed  CAS  Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49(suppl 1):419–432

    Article  Google Scholar 

  • Törnroth-Horsefield S, Wang Y et al (2006) Structural mechanism of plant aquaporin gating. Nature 439(7077):688–694

    Article  PubMed  CAS  Google Scholar 

  • Tournaire-Roux C, Sutka M et al (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393–397

    Article  PubMed  CAS  Google Scholar 

  • Tyerman SD (1982) Water relations of seagrasses – stationary volumetric elastic-modulus and osmotic-pressure of the leaf-cells of halophila-ovalis, zostera-capricorni, and posidonia-australis. Plant Physiol 69(4):957–965

    Article  PubMed  CAS  Google Scholar 

  • Tyerman SD, Oats P et al (1989) Turgor-volume regulation and cellular water relations in Nicotiana tabacum roots grown in high salinities. Aust J Plant Physiol 16:517–531

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, New York

    Google Scholar 

  • Uehlein N, Lovisolo C et al (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  PubMed  CAS  Google Scholar 

  • Uehlein N, Otto B et al (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20:648–657

    Article  PubMed  CAS  Google Scholar 

  • van der Weele CM, Canny MJ et al (1996) Water in aerenchyma spaces in roots. A fast diffusion path for solutes. Plant Soil 184(1):131–141

    Article  Google Scholar 

  • Vandeleur R, Niemietz C et al (2005) Roles of aquaporins in root responses to irrigation. Plant Soil 274(1–2):141–161

    Article  CAS  Google Scholar 

  • Vandeleur RK, Mayo G et al (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: Diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149(1):445–460

    Article  PubMed  CAS  Google Scholar 

  • Vartapetian BB (2006) Plant anaerobic stress as a novel trend in ecological physiology, biochemistry, and molecular biology: 2. Further development of the problem. Russ J Plant Physiol 53(6):711–738

    Article  CAS  Google Scholar 

  • Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Annals of Botany 79(suppl 1):3–20

    CAS  Google Scholar 

  • Verdoucq L, Grondin A et al (2008) Structure-function analysis of plant aquaporin AtPIP2;1 gating by divalent cations and protons. Biochem J 415(3):409–416

    Article  PubMed  CAS  Google Scholar 

  • Vysotskaya LB, Arkhipova TN et al (2004) Effect of partial root excision on transpiration, root hydraulic conductance and leaf growth in wheat seedlings. Plant Physiol Biochem 42:251–255

    Article  PubMed  CAS  Google Scholar 

  • Wallace IS, Choi WG et al (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta 1758(8):1165–1175

    Article  PubMed  CAS  Google Scholar 

  • Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol 135(2):1059–1068

    Article  PubMed  CAS  Google Scholar 

  • Wallace IS, Roberts DM (2005) Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry 44(51):16826–16834

    Article  PubMed  CAS  Google Scholar 

  • Waters I, Morrell S et al (1991) Effects of anoxia on wheat seedlings. II. Influence of O2 supply prior to anoxia on tolerance to anoxia, alcoholic fermentation, and sugar levels. J Exp Bot 42(244):1437–1447

    Article  CAS  Google Scholar 

  • Whiteman SA, Nuhse TS et al (2008) A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. Plant J 56(1):146–156

    Article  PubMed  CAS  Google Scholar 

  • Xia J-H, Roberts JKM (1996) Regulation of H+ extrusion and cytoplasmic pH in maize root tips acclimated to a low-oxygen environment. Plant Physiol 111:227–233

    PubMed  CAS  Google Scholar 

  • Ye Q, Muhr J et al (2005) A cohesion/tension model for the gating of aquaporins allows estimation of water channel pore volumes in Chara. Plant Cell Environ 28(4):525–535

    Article  CAS  Google Scholar 

  • Ye Q, Steudle E (2006) Oxidative gating of water channels (aquaporins) in corn roots. Plant Cell Environ 29(4):459–470

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Yool AJ et al (2006) Mechanism of gating and ion conductivity of a possible tetrameric pore in Aquaporin-1. Structure 14:1411–1423

    Article  PubMed  CAS  Google Scholar 

  • Zhang W-H, Tyerman SD (1991) Effect of low O2 concentration and azide on hydraulic conductivity and osmotic volume of the cortical cells of wheat roots. Aust J Plant Physiol 18:603–13

    Article  Google Scholar 

  • Zhang W-H, Tyerman SD (1997) Effect of low oxygen concentration on the electrical properties of cortical cells of wheat roots. J Plant Physiol 150:567–572

    PubMed  CAS  Google Scholar 

  • Zhang W-H, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849–857

    Article  PubMed  CAS  Google Scholar 

  • Zhang YX, Roberts DM (1995) Expression of soybean Nodulin-26 in transgenic tobacco – targeting to the vacuolar membrane and effects on floral and seed development. Mol Biol Cell 6:109–117

    PubMed  CAS  Google Scholar 

  • Zhu J, Alvarez S et al (2007) Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol 145(4):1533–1548

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Tyerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bramley, H., Tyerman, S. (2010). Root Water Transport Under Waterlogged Conditions and the Roles of Aquaporins. In: Mancuso, S., Shabala, S. (eds) Waterlogging Signalling and Tolerance in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10305-6_8

Download citation

Publish with us

Policies and ethics