Skip to main content

Genetic Variability and Determinism of Adaptation of Plants to Soil Waterlogging

  • Chapter
  • First Online:
Waterlogging Signalling and Tolerance in Plants

Abstract

Flooding or waterlogging, and associated soil hypoxia, affect severely the growth and fitness of plant species, from crops to forest ecosystems. An improved understanding of the intra-species genetic diversity of traits involved in hypoxia tolerance is a prerequisite for crop breeding programmes aimed at increasing the tolerance to waterlogging, as well as for assessing the adaptability of natural populations to waterlogging. Some genotypes within the species have developed adaptations to hypoxia, as shown by differences among populations in growth and fitness, and in traits conferring some degree of tolerance such as sequence, expression and activity of alcohol dehydrogenase, or the ability to develop adventitious roots, increased tissue porosity and hypertrophied lenticels. Genetic control has been estimated for a number of such traits. Overall, under waterlogging, specific tolerance traits show higher heritabilities compared to traits quantifying productivity, damage or overall performance. Genomic regions involved in the control of these traits (i.e., Quantitative Trait Loci QTL) have been detected for tolerance traits in a few species, and allow gaining some insight into the genetic basis of the observed natural diversity or may be a starting point for breeding purposes. However, only for submergence tolerance in rice (sub-1) has a successful gene candidate approach resulted in the detection of alleles that are directly involved in the tolerance process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADH:

Alcohol dehydrogenase

LEI:

Lowest elongated internode

PDC:

Pyruvate decarboxylase complex

PEV:

Per cent of explained variance

QTL:

quantitative trait loci

RIL:

Real isogenic lines

SNP:

Single nucleotide polymorphism

Sub:

Submergence tolerance locus

References

  • Ashraf M (2003) Relationships between leaf gas exchange characteristics and growth of differently adapted populations of blue panicgrass (Panicum antidotale retz.) under salinity or waterlogging. Plant Sci 165:69–75

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Chang R (2005) Sensing and signalling in response to oxygen deprivation in plants and other organisms. Ann Bot 96:507–518

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Voesenek L (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Beaumont M, Nichols R (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B 263:1619–1626

    Article  Google Scholar 

  • Beavis W (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proceedings of the forty-ninth annual corn & sorghum industry research conference. pp 205–266

    Google Scholar 

  • Brown AHD, Marshall DR, Munday J (1976) Adaptedness of variants at an alcohol dehydrogenase locus in Bromus mollis. Aust J Biol Sci 29:389–396

    Google Scholar 

  • Brown A (1978) Isozymes, plant population genetic structure and genetic conservation. Theor Appl Genet 52:145–157

    Article  Google Scholar 

  • Chan J, Burton R (1992) Variation in alcohol-dehydrogenase activity and flood tolerance in white clover, Trifolium repens. Evolution 46:721–734

    Article  CAS  Google Scholar 

  • Chen M, Presting G, Barbazuk W, Goicoechea J, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman M, Tomkins J, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh N, Tyagi A, Soderlund C, Dean R, Wing R (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545

    Article  PubMed  Google Scholar 

  • Clucas R, Ladiges P (1979) Variations in populations of Eucalyptus ovata Labill and the effects of waterlogging on seedling growth. Aust J Bot 27:301–315

    Article  Google Scholar 

  • Collaku A, Harrison S (2005) Heritability of waterlogging tolerance in wheat. Crop Sci 45:722–727

    Article  Google Scholar 

  • Colmer TD, Voesenek LACJ (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681

    Article  Google Scholar 

  • Cornelious B, Chen P, Chen Y, De Leon N, Shannon J, Wang D (2005) Identification of QTLs underlying waterlogging tolerance in soybean. Mol Breed 16:103–112

    Article  Google Scholar 

  • Cornelious B, Chen P, Hou A, Shi A, Shannon J (2006) Yield potential and waterlogging tolerance of selected near-isogenic lines and recombinant inbred lines from two southern soybean populations. J Crop Improv 16:97–111

    Article  Google Scholar 

  • Daugherty C, Musgrave M (1994) Characterization of populations of rapid-cycling Brassica rapa L selected for differential waterlogging tolerance. J Exp Bot 45:385–392

    Article  Google Scholar 

  • De Carvalho M, Da Silva D, Ruas P, Medri M, Ruas E, Ruas C (2008) Flooding tolerance and genetic diversity in populations of Luehea divaricata. Biol Plant 52:771–774

    Article  Google Scholar 

  • Drew M (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  CAS  PubMed  Google Scholar 

  • Dreyer E (1994) Compared sensitivity of seedlings from 3 woody species (Quercus robur L, Quercus rubra L and Fagus silvatica L) to waterlogging and associated root hypoxia: effects on water relations and photosynthesis. Ann For Sci 51:417–429

    Article  Google Scholar 

  • Eveno E, Collada C, Guevara M, Léger V, Soto A, Díaz L, Léger P, González-Martínez S, Cervera M, Plomion C, Garnier-Géré P (2008) Contrasting patterns of selection at Pinus pinaster Ait drought stress candidate genes as revealed by genetic differentiation analyses. Mol Biol Evol 25:417–437

    Article  CAS  PubMed  Google Scholar 

  • Finch-Savage W, Come D, Lynn J, Corbineau F (2005) Sensitivity of Brassica oleracea seed germination to hypoxia: a QTL analysis. Plant Sci 169:753–759

    Article  CAS  Google Scholar 

  • Fukao T, Harris T, Bailey-Serres J (2009) Evolutionary analysis of the sub1 gene cluster that confers submergence tolerance to domesticated rice. Ann Bot 103:143–150

    Article  CAS  PubMed  Google Scholar 

  • Fukao T, Kennedy R, Yamasue Y, Rumpho M (2003) Genetic and biochemical analysis of anaerobically-induced enzymes during seed germination of Echinochloa crus-galli varieties tolerant and intolerant of anoxia. J Exp Bot 54:1421–1429

    Article  CAS  PubMed  Google Scholar 

  • Fukao T, Xu KN, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    Article  CAS  PubMed  Google Scholar 

  • Germain V, Ricard B, Raymond P, Saglio PH (1997) The role of sugars, hexokinase, and sucrose synthase in the determination of hypoxically induced tolerance to anoxia in tomato roots. Plant Physiol 114:167–175

    CAS  PubMed  Google Scholar 

  • Githiri S, Watanabe S, Harada K, Takahashi R (2006) QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. Plant Breed 125:613–618

    Article  CAS  Google Scholar 

  • GuangHeng Z, DaLi Z, ShiKai H, Yan S, LaTie A, LongBiao G, Qian Q (2006) QTL analysis of traits concerned submergence tolerance at seedling stage in rice (Oryza sativa L). Acta Agron Sin 32:1280–1286

    Google Scholar 

  • Hartl D, Clark A (1997) Principles of population genetics. Sinauer Associates, Sunderland

    Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S, Antonio B, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush G, Sasaki T (1998) High-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    CAS  PubMed  Google Scholar 

  • Hattori Y, Miura K, Asano K, Yamamoto E, Mori H, Kitano H, Matsuoka M, Ashikari M (2007) A major QTL confers rapid internode elongation in response to water rise in deepwater rice. Breed Sci 57:305–314

    Article  Google Scholar 

  • Hattori Y, Nagai K, Mori H, Kitano H, Matsuoka M, Ashikari M (2008) Mapping of three QTLs that regulate internode elongation in deepwater rice. Breed Sci 58:39–46

    Article  CAS  Google Scholar 

  • Heathcote C, Davies M, Etherington J (1987) Phenotypic flexibility of Carex-flacca Schreb – tolerance of soil flooding by populations from contrasting habitats. New Phytol 105:381–391

    Article  Google Scholar 

  • Herzog S, Krabel D (1999) Genetic structures of a flooded and a non-flooded oak (Quercus robur) population from the floodplains of the Rhein river. Ekológia (Bratisl) 18:160–163

    Google Scholar 

  • Ikeda H, Kamoshita A, Manabe T (2007) Genetic analysis of rooting ability of transplanted rice (Oryza sativa L.) under different water conditions. J Exp Bot 58:309–318

    Article  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jackson M, Campbell D (1976) Waterlogging and petiole epinasty in tomato: the role of ethylene and low oxygen. New Phytol 76:21–29

    Article  CAS  Google Scholar 

  • Jackson M, Ishizawa K, Ito O (2009) Evolution and mechanisms of plant tolerance to flooding stress. Ann Bot 103:137–142

    Article  CAS  PubMed  Google Scholar 

  • Jansen R, Van Oijen J, Stam P, Lister C, Dean C (1995) Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet 91:33–37

    Article  CAS  Google Scholar 

  • Jermstad K, Bassoni D, Jech K, Ritchie G, Wheeler N, Neale D (2003) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir. III. Quantitative trait loci-by-environment interactions. Genetics 165:1489–1506

    CAS  PubMed  Google Scholar 

  • Kamolsukyunyong W, Ruanjaichon V, Siangliw M, Kawasaki S, Sasaki T, Vanavichit A, Tragoonrung S (2001) Mapping of quantitative trait locus related to submergence tolerance in rice with aid of chromosome walking. DNA Res 8:163–171

    Article  CAS  PubMed  Google Scholar 

  • Kato-Noguchi H, Morokuma M (2007) Ethanolic fermentation and anoxia tolerance in four rice cultivars. J Plant Physiol 164:168–173

    Article  CAS  PubMed  Google Scholar 

  • Kato-Noguchi H, Ohashi C, Sasaki R (2003) Metabolic adaptation to flooding stress in upland and lowland rice seedlings. Acta Phys Plant 25:257–261

    Article  CAS  Google Scholar 

  • Kawano R, Doi K, Yasui H, Mochizuki T, Yoshimura A (2008) Mapping of QTLs for floating ability in rice. Breed Sci 58:47–53

    Article  CAS  Google Scholar 

  • Kawano N, Ito O, Sakagami J (2009) Morphological and physiological responses of rice seedlings to complete submergence (flash flooding). Ann Bot 103:161–169

    Article  PubMed  Google Scholar 

  • Kolodynska A, Pigliucci M (2003) Multivariate responses to flooding in Arabidopsis: an experimental evolutionary investigation. Funct Ecol 17:131–140

    Article  Google Scholar 

  • Kottapalli KR, Sarla N, Kikuchi S (2006) In silico insight into two rice chromosomal regions associated with submergence tolerance and resistance to bacterial leaf blight and gall midge. Biotechnol Adv 24:561–589

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski T (1997) Responses of woody plants to flooding and salinity. Tree Phys Monogr 1:1–29

    Google Scholar 

  • Ladiges P, Kelso A (1977) Comparative effects of waterlogging on 2 populations of Eucalyptus viminalis Labill and one population of Eucalyptus ovata Labill. Aust J Bot 25:159–169

    Article  Google Scholar 

  • Lévy G, Lefèvre Y, Becker M, Frochot H, Picard J, Wagner PA (1999) Excess water: effects on growth of oak trees. Rev For Fr 51:151–161

    Google Scholar 

  • Lexer C, Fay M, Joseph J, Nica M, Heinze B (2005) Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (european aspen): the role of ecology and life history in gene introgression. Mol Ecol 14:1045–1057

    Article  CAS  PubMed  Google Scholar 

  • Linhart Y, Baker I (1973) Intra-population differentiation of physiological response to flooding in a population of Veronica peregrina L. Nature 242:275–276

    Article  Google Scholar 

  • Loreti J, Oesterheld M (1996) Intraspecific variation in the resistance to flooding and drought in populations of Paspalum dilatatum from different topographic positions. Oecologia 108:279–284

    Google Scholar 

  • Lynch M, Walsh B (1997) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B (2005a) Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica 142:33–42

    Article  Google Scholar 

  • Mano Y, Muraki M, Takamizo T (2006) Identification of QTL controlling flooding tolerance in reducing soil conditions in maize (Zea mays L) seedlings. Plant Prod Sci 9:176–181

    Article  CAS  Google Scholar 

  • Mano Y, Omori F (2008) Verification of QTL controlling root aerenchyma formation in a maize × teosinte “Zea nicaraguensis” advanced backcross population. Breed Sci 58:217–223

    Article  Google Scholar 

  • Mano Y, Omori F, Kindiger B, Takahashi H (2008) A linkage map of maize x teosinte Zea luxurians and identification of QTLs controlling root aerenchyma formation. Mol Breed 21:327–337

    Article  CAS  Google Scholar 

  • Mano Y, Omori F, Muraki M, Takamizo T (2005b) QTL mapping of adventitious root formation under flooding conditions in tropical maize (Zea mays l.) seedlings. Breed Sci 55:343–347

    Article  Google Scholar 

  • Mano Y, Omori F, Takamizo T, Kindiger B, Bird R, Loaisiga C, Takahashi H (2007) QTL mapping of root aerenchyma formation in seedlings of a maize x rare teosinte Zea nicaraguensis cross. Plant Soil 295:103–113

    Article  CAS  Google Scholar 

  • Marcar N, Crawford D, Saunders A, Matheson A, Arnold R (2002) Genetic variation among and within provenances and families of Eucalyptus grandis W Hill and E. globulus Labill. subsp globulus seedlings in response to salinity and waterlogging. For Ecol Manage 162:231–249

    Article  Google Scholar 

  • Marshall DR, Broué P, Pryor AJ (1973) Adaptive significance of alcohol dehydrogenase isozymes in maize. Nat New Biol 244:16–17

    CAS  PubMed  Google Scholar 

  • Martin N, Bouck A, Arnold M (2006) Detecting adaptive trait introgression between Iris fulva and I. brevicaulis in highly selective field conditions. Genetics 172:2481–2489

    Article  CAS  PubMed  Google Scholar 

  • McManmon M, Crawford R (1971) A metabolic theory of flooding tolerance: the significance of enzyme distribution and behaviour. New Phytol 70:299–306

    Article  CAS  Google Scholar 

  • Mollard F, Striker G, Ploschuk E, Vega A, Insausti P (2008) Flooding tolerance of Paspalum dilatatum (Poaceae: Paniceae) from upland and lowland positions in a natural grassland. Flora 203:548–556

    Google Scholar 

  • Nandi S, Subudhi PK, Senadhira D, Manigbas NL, SenMandi S, Huang N (1997) Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet 255:1–8

    Article  CAS  PubMed  Google Scholar 

  • Nemoto K, Ukai Y, Tang D, Kasai Y, Morita M (2004) Inheritance of early elongation ability in floating rice revealed by diallel and QTL analyses. Theor Appl Genet 109:42–47

    Article  CAS  PubMed  Google Scholar 

  • Parelle J, Zapater M, Scotti-Saintagne C, Kremer A, Jolivet Y, Dreyer E, Brendel O (2007) Quantitative trait loci of tolerance to waterlogging in a european oak (Quercus robur L): physiological relevance and temporal effect patters. Plant Cell Environ 30:422–434

    Article  PubMed  Google Scholar 

  • Parolin P (2009) Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Ann Bot 103:359–376

    Article  PubMed  Google Scholar 

  • Paterson A, Lander E, Hewitt J, Peterson S, Lincoln S, Tanksley S (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  CAS  PubMed  Google Scholar 

  • Qiu FZ, Zheng YL, Zhang ZL, Xu SZ (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann Bot 99:1067–1081

    Article  PubMed  Google Scholar 

  • Ricard B, VanToai T, Chourey P, Saglio P (1998) Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant. Plant Physiol 116:1323–1331

    Article  CAS  PubMed  Google Scholar 

  • Ruanjaichon V, Sangsrakru D, Kamolsukyunyong W, Siangliw M, Toojinda T, Tragoonrung S, Vanavichit A (2004) Small GTP-binding protein gene is associated with QTL for submergence tolerance in rice. Russ J Plant Physiol 51:648–657

    Article  CAS  Google Scholar 

  • Ruedinger M, Glaeser J, Hebel I, Dounavi A (2008) Genetic structures of common ash (Fraxinus excelsior) populations in Germany at sites differing in water regimes. Can J For Res 38:1199–1210

    Article  Google Scholar 

  • Septiningsih E, Pamplona A, Sanchez D, Neeraja C, Vergara G, Heuer S, Ismail A, Mackill D (2009) Development of submergence-tolerant rice cultivars: the sub1 locus and beyond. Ann Bot 103:151–160

    Article  CAS  PubMed  Google Scholar 

  • Setter T, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253:1–34

    Article  CAS  Google Scholar 

  • Siangliw M, Toojinda T, Tragoonrung S, Vanavichit A (2003) Thai jasmine rice carrying QTL ch9 (subQTL) is submergence tolerant. Ann Bot 91:255–261

    Article  CAS  PubMed  Google Scholar 

  • Silva S, Sereno M, Lemons eSilva C, de Oliveira A, Neto J (2007) Inheritance of tolerance to flooded soils in maize. Crop Breed Appl Biotechnol 7:165–172

    Google Scholar 

  • Sripongpangkul K, Posa G, Senadhira D, Brar D, Huang N, Khush G, Li Z (2000) Genes/QTLs affecting flood tolerance in rice. Theor Appl Genet 101:1074–1081

    Article  CAS  Google Scholar 

  • Tang D, Kasai Y, Miyamoto N, Ukai Y, Nemoto K (2005) Comparison of QTLs for early elongation ability between two floating rice cultivars with a different phylogenetic origin. Breed Sci 55:1–5

    Article  CAS  Google Scholar 

  • Toojinda T, Siangliw M, Tragoonrung S, Vanavichit A (2003) Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Ann Bot 91:243–253

    Article  CAS  PubMed  Google Scholar 

  • Torres AM, Diedenhoffen U, Johnstone IM (1977) The early allele of alcohol dehydrogenase in sunflower populations. J Hered 68:11–16

    CAS  Google Scholar 

  • Tuberosa R, Salvi S (2004) Cereal genomics. In: Gupta P, Varshney R (eds) Springer, Netherlands, pp 253–315

    Google Scholar 

  • Vantoai T, St Martin S, Chase K, Boru G, Schnipke V, Schmitthenner A, Lark K (2001) Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci 41:1247–1252

    Article  Google Scholar 

  • Vartapetian B (2005) Plant anaerobic stress as a novel trend in ecological physiology, biochemistry, and molecular biology: 1. Establishment of a new scientific discipline. Russ J Plant Physiol 52:826–844

    Article  CAS  Google Scholar 

  • Vartapetian B (2006) Plant anaerobic stress as a novel trend in ecological physiology, biochemistry, and molecular biology. 2. Further development of the problem. Russ J Plant Physiol 53:711–738

    Article  CAS  Google Scholar 

  • Vartapetian B, Jackson M (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3–20

    Article  CAS  Google Scholar 

  • Voesenek LACJ, Colmer TD, Pierik R, Millenaar FF, Peeters AJM (2006) How plants cope with complete submergence. New Phytol 170:213–226

    Article  CAS  PubMed  Google Scholar 

  • Wagner P, Dreyer E (1997) Interactive effects of waterlogging and irradiance on the photosynthetic performance of seedlings from three oak species displaying different sensitivities (Quercus robur, Q petraea and Q rubra). Ann Sci For 54:409–429

    Article  Google Scholar 

  • Waldren S, Etherington J, Davies M (1988) Comparative studies of plant-growth and distribution in relation to waterlogging. 15. The effect of waterlogging on growth of various populations of and hybrids between geum-rivale l and geum-urbanum l. New Phytol 109:97–106

    Article  Google Scholar 

  • Will R, Seiler J, Feret P, Aust W (1995) Effects of rhizosphere inundation on the growth and physiology of wet and dry-site Acer rubrum (red maple) populations. Am Midl Nat 134:127–139

    Article  Google Scholar 

  • Xu K, Mackill D (1995) RAPD and RFLP mapping of a submergence tolerance locus in rice. Rice Genet Newsl 12:244–245

    Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail A, Bailey-Serres J, Ronald P, Mackill D (2006) Sub1a is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Xu X, Ronald PC, Mackill DJ (2000) A high-resolution linkage map of the vicinity of the rice submergence tolerance locus sub1. Mol Gen Genet 263:681–689

    Article  CAS  PubMed  Google Scholar 

  • Xu KN, Mackill DJ (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed 2:219–224

    Article  CAS  Google Scholar 

  • Yeboah M, Chen X, Liang G, Gu M, Xu C (2008) Inheritance of waterlogging tolerance in cucumber (Cucumis sativus L). Euphytica 162:145–154

    Article  Google Scholar 

  • Zaidi P, Maniselvan P, Sultana R, Yadav M, Singh R, Singh S, Dass S, Srinivasan G (2007) Importance of secondary traits in improvement of maize (Zea mays L) for enhancing tolerance to excessive soil moisture stress. Cereal Res Commun 35:1427–1435

    Article  Google Scholar 

  • Zaidi P, Rafique S, Singh N (2003) Response of maize (Zea mays L) genotypes to excess soil moisture stress: morpho-physiological effects and basis of tolerance. Eur J Agron 19:383–399

    Article  Google Scholar 

  • Zheng B, Yang L, Mao C, Zhang W, Wu P (2006) QTLs and candidate genes for rice root growth under flooding and upland conditions. Acta Genet Sin 33:141–151

    Article  PubMed  Google Scholar 

  • Zheng B, Yang L, Zhang W, Mao C, Wu Y, Yi K, Liu F, Wu P (2003) Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor Appl Genet 107:1505–1515

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Wang J, Yi Q, Wang Y, Zhu Y, Zhang Z (2007a) Quantitative trait loci for seedling vigor in rice under field conditions. Field Crops Res 100:294–301

    Article  Google Scholar 

  • Zhou M, Li H, Mendham N (2007b) Combining ability of waterlogging tolerance in barley. Crop Sci 47:278–284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Brendel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parelle, J., Dreyer, E., Brendel, O. (2010). Genetic Variability and Determinism of Adaptation of Plants to Soil Waterlogging. In: Mancuso, S., Shabala, S. (eds) Waterlogging Signalling and Tolerance in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10305-6_12

Download citation

Publish with us

Policies and ethics