Skip to main content

Landslide Dams in the Central Andes of Argentina (Northern Patagonia and the Argentine Northwest)

  • Chapter
  • First Online:
Natural and Artificial Rockslide Dams

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 133))

Abstract

Landslide dams are frequent phenomena in the Argentine Andes. We studied 20 landslide dams in NW Argentina and 41 landslide dams in northern Patagonia. These examples show that most of the landslide dams in both regions have longevity of several hundred to several tens of thousands of years. In those cases where the mode of dam erosion/breach was reconstructable it was either related to climatic variability influencing the inflow of water into the landslide-dammed lake or by landsliding into the landslide dammed lake causing a tsunami wave which overtopped the dam crown and caused its erosion. However such tsunami waves not always lead to dam failure. There is one case where flood deposits downriver a dam exist and the landslide dammed lake contains a voluminous landslide deposit, however the dam did not breach. Hence the flood deposits are related to the tsunami wave but not to a breach. In addition, our examples indicate the necessity of expanding the well established dam classification system used globally in the past 18 years. Here we define 4 further dam types which are related to (a) the diversion of the river away from the valley over bedrock (b) the diversion of the river into the neighbouring catchments (c) the deposition of the landslide in a drainage divide, and (d) the formation of multiple dams by the breach of a landslide dam itself. Furthermore, ponds on top of landslide deposits are frequent and depending on their size a catastrophic release may cause damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bookhagen, B., Haselton, K. and Trauth, M.H. (2001) Hydrological modelling of a Pleistocene landslide-dammed lake in the Santa Maria Basin, NW Argentina, Palaeogeography Palaeoclimatology Palaeoecology 169, 113–127.

    Article  Google Scholar 

  2. Costa, J.E. and Schuster, R.L. (1988) The formation and failure of natural dams, Geological Society of America Bulletin 100, 1054–1068.

    Article  Google Scholar 

  3. Costa, C.H. and González Díaz, E.F. (2007) Age contraints and paleoseismic implication of rock avalanches in northern Patagonian Andes, Argentina, Journal of South American Earth Sciences 24, 48–57.

    Article  Google Scholar 

  4. Dunning, S., Petley, D., Rosser, N. and Strom, A. (2005) The morphology and sedimentology of valley confined rock-avalanche deposits and their effect on potential dam hazard, in O. Hungr, R. Fell, R. Couture and E. Eberhardt (Eds.), Landslide Risk Management. Taylor and Francis Group, London, pp. 691–701.

    Google Scholar 

  5. Ermini, L. and Casagli, N. (2003) Prediction of the behaviour of landslide dams using a geomorphological dimensionless index, Earth Surface Processes and Landforms 28, 31–47.

    Article  Google Scholar 

  6. Fauqué, L. and Strecker, M.R. (1988) Large rock avalanche deposits (Sturzstrome, sturzstroms) at Sierra Aconquija, northern Sierras Pampeanas, Argentina, Eclogae Geologicae Helvetiae 81, 579–592.

    Google Scholar 

  7. Fauqué, L., Cortés, J., Folguera, A. and Etcheverría, M. (2000) Avalanchas de roca asociadas a neotectónica en el valle del río Mendoza, al sur de Uspallata, Revista de la Asociación Geológica Argentina 55, 419–423.

    Google Scholar 

  8. Fauqué, L. and Tchilinguirian, P. (2002) Villavil rockslides, Catamarca Province, Argentina, in S.G. Evans and J.V. DeGraff (eds.), Catastrophic landslides: Effects, Occurrence, and Mechanism, Reviews in Engineering Geology XV, Geological Society of America, Boulder, CO, pp. 303–324.

    Google Scholar 

  9. Fauqué, L.E., Baumann, V., Di Tomasso, I., Rosas, M., Hermanns, R.L., González, M., Coppolecchia, M. and Wilson, C.G.J. (2005) Evidencia de paleoendicamientos en la cuenca del río Mendoza, Argentina, XVI Congreso Geológico Argentino, La Plata 3, 507–514.

    Google Scholar 

  10. Ferrer, C. (1999) Represamientos y rupturas de embalses naturales (lagunas de obstrución) como efectos cosísmicos: Algunos ejemplos en los Andes venezolanos, Revista Geográfica Venezolana 40, 109–121.

    Google Scholar 

  11. Folguera, A., Ramos, V.A., González Díaz, E. and Hermanns, R. (2006) Miocene to quaternary evolution of the Guañacos fold-and-thrust belt in the Neuquen Andes between 37 and 37°30'S, in S. Kay and V.A. Ramos (eds.), Evolution of the Andean Margin: A Tectonic and Magmatic View from the Andes to the Neuquen Basin (35–39°S lat), Vol. 407. GSC, Boulder, CO, Special Publication, pp. 247–266.

    Chapter  Google Scholar 

  12. Folguera, A., Ramos, V.A., Hermanns, R.L. and Naranjo, J.A. (2004) Neotectonics in the foothills of the southernmost central Andes (37–38°S): Evidence of strike-slip displacement alng the Atiñir-Copahue fault zone, Tectonics 23, doi:10.1029/2003TC001533.

    Google Scholar 

  13. Glancy, P.A. and Bell, J.W. (2000) Landslide-induced flooding at Ophir Creek, Washoe County, western Nevada, May 30, 1983, U.S. Geological Survey Professional Paper 1617, 1–94.

    Google Scholar 

  14. González Díaz, E.F. and Fauqué, L. (1987) Provenencia del material componental del torrente de barro de “El Volcan”, Quebrada de Huamahuaca (Jujuy), República Argentina, X Congreso Geologico Argentino 1, 309–312.

    Google Scholar 

  15. González Díaz, E.F., Fauqué, L., Giaccardi, A. and Costa, C. (2000) Las lagunas de Varvar Co Campos y Varvar Co Tapia (N del Neuquén, Argentina): Su relación con avalanchas de rocas, Revista de la Asociacion Geológica Argentina 55, 147–164.

    Google Scholar 

  16. González Díaz, E.F., Giaccardi, A. and Costa, C. (2001) La avalancha de rocas del río Barrancas (Cerro Pelán), norte del Neuquén: Su relación con la catástrofe del río Colorado (29/12/1914), Revista de la Asociacion Geológica Argentina 56, 466–480.

    Google Scholar 

  17. González Díaz, E.F. (2003) El englazamiento en la región de la caldera de Caviahue-Copahue (Provincia del Neuquén): Su reinterpretación, Revista de la Asociación Geológica Argentina 58, 356–366.

    Google Scholar 

  18. González Díaz, E.F. and Folguera, A. (2005) Reconocimiento y descripción de avalanchas de rocas prehistóricas en el área neuquina delimitada por los paralelos 37°15' y 37°30'S y los meridianos 70°55' y 71°05'S, Revista de la Asociación Geológica Argentina 60, 446–460.

    Google Scholar 

  19. González Díaz, E.F., Folguera, A. and Hermanns, R.L. (2005) La avalancha de rocas del cerro Los Cardos (37°10'S, 70°53'O) en la región norte de la provincia del Neuquen, Revista de la Asociacion Geologica Argentina 60, 207–220.

    Google Scholar 

  20. González Díaz, E.F., Folguera, A., Costa, C.H., Wright, E. and Ellisondo, M. (2006) Los grandes deslizamientos de la región septentrional neuquina entre 36–38°S: Una propuesta de inducción sísmica, Revista de la Asociacion Geologica Argentina 61, 197–217.

    Google Scholar 

  21. Groeber, P. (1916) Informe sobre las causas que han producido las crecientes del río Colorado (Territorios del Neuquén y La Pampa) en 1914, Dirección General de Minas, Geología e Hidrogeología, 11, Serie B, Geología, 29 p.

    Google Scholar 

  22. Harrington, H.J. (1946) Las corrientes de barro (mud flows) de “El Volcan”, Quebrada de Huamhuaca, Jujuy, Revista de la Asociación Geológica Argentina 1–2, 149–165.

    Google Scholar 

  23. Hermanns, R.L. (1999) Spatial-temporal distribution of mountain-front collapse and formation of giant landslides in the arid Andes of northwestern Argeintina (24–28° S, 65–68° W) [Ph.D. thesis]: Universität Potsdam, 123 p.

    Google Scholar 

  24. Hermanns, R.L. and Strecker, M.R. (1999) Structural and lithological controls on large Quaternary rock avalanches (sturzstroms) in arid northwestern Argentina, Geological Society of America Bulletin 111, 934–948.

    Article  Google Scholar 

  25. Hermanns, R.L., Trauth, M.H., Niedermann, S., McWilliams, M. and Strecker, M.R. (2000) Tephrochronologic constraints on temporal distribution of large landslides in northwest Argentina, Journal of Geology 108, 35–52.

    Article  Google Scholar 

  26. Hermanns, R.L., González Díaz, E.F., Folguera, A. and Mardones, M. (2003) Large massive rock slope failures, landslide dams, related valley evolution, and their association with the tectonic setting in the Argentine and Chilean Andes between 36 and 38° S, 10th Congreso Geologico Chileno, Concepción, CD, 5 p.

    Google Scholar 

  27. Hermanns, R.L., Naumann, R., Folguera, A. and Pagenkopf, A. (2004) Sedimentologic analyses of deposits of a historic landslide dam failure in Barancas valley causing the 1914 Rio Colorado flood, northern Patagonia, Argentina, in W.A. Lacerda, M. Ehrlich, S.A.B. Fontoura and A.S.F. Sayão (eds.), Landslides, Evaluation and Stabilization. Balkema, Leiden, pp. 1439–1445.

    Google Scholar 

  28. Hermanns, R.L., Niedermann, S., González Díaz, E.F., Fauque, L., Folguera, A., Ivy, O.S. and Kubik, P.W. (2004) Landslide dams in the Argentine Andes, NATO Advanced Research Workshop: Security of natural and artificial rockslide dams, Bishkek, Kyrgyzstan, Abstract Volume, pp. 79–85.

    Google Scholar 

  29. Hermanns, R.L., Niedermann, S., Ivy-Ochs, S. and Kubik, P.W. (2004) Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW Argentina) – evidence from surface exposure dating and stratigraphic analyses, Landslides 1, 113–122.

    Article  Google Scholar 

  30. Hermanns, R.L. and Villanueva Garcia, A. (2005) Did large earthquakes cause massive landsliding and near-surface deformation in the Calchaquíes valleys, NW Argentina? XVI Congreso Geológico Argentino, La Plata, CD, 8 p.

    Google Scholar 

  31. Hermanns, R.L., Niedermann, S., Villanueva Garcia, A. and Schellenberger, A. (2006) Rock avalanching in the NW Argentine Andes as a result of complex interactions of lithologic, structural and topographic boundary conditions, climate change and active tectonics, in S.G. Evans, G. Scarascia Mugnozza, A.L. Strom and R.L. Hermanns (eds.), Landslides from massive rock slope failure, NATO Science Series IV, v. 49, Springer, Dordrecht, 539–569.

    Google Scholar 

  32. Hermanns, R.L., Blikra, L.H. and Longva, O. (2009) Relation between rockslide dam and valley morphology and its impact on rockslide dam longevity and control on potential breach development based on examples from Norway and the Andes, 2nd International Congress: Long term behavior of dams, Graz, pp. 789–794.

    Google Scholar 

  33. Hovius, N. (1998) Landslide-driven drainage network evolution in a pre-steady-state mountain belt: Finisterre Mountains, Papua New Guinea, Geology 26, 1071–1074.

    Article  Google Scholar 

  34. Igarzabal, A.P. (1978) “Los flujos densos de la Quebrada de Escoipe”, VII Congreso Geologico Argentino, Neuquen Actas, 109–117.

    Google Scholar 

  35. Jackson, L., Hungr, O., Gardner, J. and Mackay, C. (1989) Cathedral Mountain debris flows, Canada, Bulletin of the International Association of Engineering Geology 40, 35–54.

    Google Scholar 

  36. Korup, O. (2004) Geomorphometric characteristics of New Zealand landslide dams, Engineering Geology 73, 13–35.

    Article  Google Scholar 

  37. Malamud, B.D., Jordan, T.E., Alonso, R.A., Gallardo, E.F., Gonzalez, R.E. and Kelley, S.A. (1996) Pleistocene lake Lerma, Salta Province, NW Argentina, XIII Congreso Geologico Argentino y III Congreso de Exploracion de Hidrocarburos, Buenos Aires 4, 103–114.

    Google Scholar 

  38. Mardones Flores, M. (2002) Evolución morfogenética de la hoya del río Laja y su incidencia en la geomorfología de la región del Biobío, Chile, Revista Geográfica de Chile Terra Australis 47, 97–127.

    Google Scholar 

  39. Narciso, V., Santamaría, G. and Zanettini, J.C. (1999) Hoja Geológica preliminar 3769-I, Barrancas, Servicio Geológico Minero Argentino, scale 1:250.000.

    Google Scholar 

  40. Niemeyer, H. and Muñoz, J. (1988) The Quaternary volcanic belt of the southern continental margin of South America: Transverse structural and petrochemical variations across the segment between 38 and 39°S, Journal of South American Earth Sciences 1, 147–161.

    Article  Google Scholar 

  41. Penna, I., Hermanns, R.L. and Folguera, A. (2007) Determinación del área inmediata afectada por el desagote catastrófico de la laguna Navarete en relación a la actividad tectónica del norte Neoquíno, Revista de la Asociación Geológica Argentina 62, 460–466.

    Google Scholar 

  42. Penna, I., Hermanns, R.L. and Folguera, A. (2008) Remoción en masa y collapso catastrófico de diques naturales generados en el frente orogénico andino (36–38°S9): Los casos Navarrete y río Barrancas, Revista de la Asociación Geológica Argentina 63, 172–180.

    Google Scholar 

  43. Rapela, C.W. (1976) El basamento metamórfico de la region de Cafayate, Provincia de Salta, Aspectos petrológicos y geoquímicos, Revista de la Asociación Geológica Argentina 21, 203–222.

    Google Scholar 

  44. Salfity, J.A. and Marquillas, R.A. (1994) Tectonic and sedimentary evolution of the Cretaceous-Eocene Salta Group Basin, Argentina, in J.A. Salfity (ed.), Cretaceous Tectonics of the Andes. Friedrich Vieweg und Sohn, Berlin, pp. 266–315.

    Google Scholar 

  45. Strecker, M.R., Cerveny, P., Bloom, A.L. and Malizzia, D. (1989) Late cenozoic tectonism and landscape development in the foreland of the Andes: Northern Sierras Pampeanas (26–28°S), Argentina, Tectonics 8, 517–534.

    Article  Google Scholar 

  46. Trauth, M.H. and Strecker, M.R. (1999) Formation of landslide-dammed lakes during a wet period between 40,000 and 25,000 yr BP in northwestern Argentina, Palaeogeography Palaeoclimatology Palaeoecology 153, 277–287.

    Article  Google Scholar 

  47. Trauth, M.H., Alonso, R.A., Haselton, K.R., Hermanns, R.L. and Strecker, M.R. (2000) Climate change and mass movements in the NW Argentine Andes, Earth and Planetary Science Letters 179, 243–256.

    Article  Google Scholar 

  48. Wayne, W.J. (1999) Alemanía rockfall dam: A record of a mid-Holocene earthquake and catastrophic flood in northwestern Argentina, Geomorphology 27, 295–306.

    Article  Google Scholar 

  49. WP/WLI (1990) A suggested method for reporting a landslide, Bulletin of the International Association of Engineering Geology 3, 101–110.

    Google Scholar 

  50. Zanettini, J.C. (2000) Carta Geologica preliminar: Las Ovejas, SEGEMAR, scale 1:250.000.

    Google Scholar 

Download references

Acknowledgement

This project was sponsored by the GeoForschungsZentrum Potsdam and by the Deutsche Forschungsgemeinschaft as part of the Collaborative Research Center 267 and Graduate College 450 grant to Hermanns. We especially emphasize that Mario A. Deza inspired R.L.H. to start landslide studies in N-Patagonia. Mario died during our first campaign in November 2002 crossing Lileo river. This paper is dedicated to Mario who conducted landslide hazard research in Neuquén Province as a private effort in his spare time. Although we did not know Mario well, we were impressed by his professional dedication, by his open and always friendly way in interacting with people, and the way he loved the Neuquén Andes. We also thank A. Villanueva Garcia and R. Alonso for fruitful discussions, field assistance and logistcal support in NW Argentina and M.R. Strecker and M. Trauth for discussions in Potsdam. A. Pagenkopf helped to assemble data on landslide dams in N Patagonia. R.L.H. acknowledges B. Merz, G. Borm, J. Erzinger, K. Czurda, and F. Gehbauer for their encouragement and help, and C. Hickson for her support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reginald L. Hermanns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hermanns, R.L., Folguera, A., Penna, I., Fauqué, L., Niedermann, S. (2011). Landslide Dams in the Central Andes of Argentina (Northern Patagonia and the Argentine Northwest). In: Evans, S., Hermanns, R., Strom, A., Scarascia-Mugnozza, G. (eds) Natural and Artificial Rockslide Dams. Lecture Notes in Earth Sciences, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04764-0_5

Download citation

Publish with us

Policies and ethics