Skip to main content

Equations Defining the Polynomial Closure of a Lattice of Regular Languages

  • Conference paper
Automata, Languages and Programming (ICALP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5556))

Included in the following conference series:

Abstract

The polynomial closure Pol\((\mathcal{L})\) of a class of languages \(\mathcal{L}\) of A * is the set of languages that are finite unions of marked products of the form L 0 a 1 L 1 ... a n L n , where the a i are letters and the L i are elements of \(\mathcal{L}\).

The main result of this paper gives an equational description of Pol\((\mathcal{L})\), given an equational description of \(\mathcal{L}\), when \(\mathcal{L}\) is a lattice of regular languages closed under quotients, or a quotienting algebra of languages, as we call it in the sequel. The term “equational description” refers to a recent paper [5], where it was shown that any lattice of regular languages can be defined by a set of profinite equations. More formally, our main result can be stated as follows:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, J.: Finite semigroups and universal algebra. World Scientific Publishing Co. Inc., River Edge (1994); Translated from the 1992 Portuguese original and revised by the author

    MATH  Google Scholar 

  2. Chalopin, J., Leung, H.: On factorization forests of finite height. Theoret. Comput. Sci. 310(1-3), 489–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Colcombet, T.: A combinatorial theorem for trees. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 901–912. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Colcombet, T.: Factorisation Forests for Infinite Words. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 226–237. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Gehrke, M., Grigorieff, S., Pin, J.-É.: Duality and equational theory of regular languages. In: Aceto, L., et al. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 246–257. Springer, Heidelberg (2008)

    Google Scholar 

  6. Kufleitner, M.: The Height of Factorization Forests. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 443–454. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Pin, J.-E.: Algebraic tools for the concatenation product. Theoret. Comput. Sci. 292, 317–342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pin, J.-E.: Profinite methods in automata theory. In: Albers, S. (ed.) 26th International Symposium on Theoretical Aspects of Computer Science (STACS 2009), Schloss Dagstuhl, Germany, Dagstuhl, Germany. Internationales Begegnungs- Und Forschungszentrum für Informatik (IBFI), pp. 31–50 (2009)

    Google Scholar 

  9. Pin, J.-E., Straubing, H.: Some results on \(\mathcal{C}\)-varieties. Theoret. Informatics Appl. 39, 239–262 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pin, J.-É., Weil, P.: Profinite semigroups, Mal’cev products and identities. J. of Algebra 182, 604–626 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pin, J.-É., Weil, P.: Polynomial closure and unambiguous product. Theory Comput. Systems 30, 383–422 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Simon, I.: Properties of factorization forests. In: Pin, J.E. (ed.) LITP 1988. LNCS, vol. 386, pp. 65–72. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  13. Simon, I.: Factorization forests of finite height. Theoret. Comput. Sci. 72(1), 65–94 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Simon, I.: A short proof of the factorization forest theorem. In: Tree automata and languages (Le Touquet, 1990). Stud. Comput. Sci. Artificial Intelligence, vol. 10, pp. 433–438. North-Holland, Amsterdam (1992)

    Google Scholar 

  15. Thomas, W.: Classifying regular events in symbolic logic. J. Comput. System Sci. 25(3), 360–376 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of formal languages, ch. 2, vol. 1, pp. 45–110. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Branco, M.J.J., Pin, JÉ. (2009). Equations Defining the Polynomial Closure of a Lattice of Regular Languages. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds) Automata, Languages and Programming. ICALP 2009. Lecture Notes in Computer Science, vol 5556. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02930-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02930-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02929-5

  • Online ISBN: 978-3-642-02930-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics