Skip to main content

Topology-Free Querying of Protein Interaction Networks

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5541))

Abstract

In the network querying problem, one is given a protein complex or pathway of species A and a protein–protein interaction network of species B; the goal is to identify subnetworks of B that are similar to the query. Existing approaches mostly depend on knowledge of the interaction topology of the query in the network of species A; however, in practice, this topology is often not known. To combat this problem, we develop a topology-free querying algorithm, which we call Torque. Given a query, represented as a set of proteins, Torque seeks a matching set of proteins that are sequence-similar to the query proteins and span a connected region of the network, while allowing both insertions and deletions. The algorithm uses alternatively dynamic programming and integer linear programming for the search task. We test Torque with queries from yeast, fly, and human, where we compare it to the QNet topology-based approach, and with queries from less studied species, where only topology-free algorithms apply. Torque detects many more matches than QNet, while in both cases giving results that are highly functionally coherent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Yuster, R., Zwick, U.: Color coding. Journal of the ACM 42, 844–856 (1995)

    Article  Google Scholar 

  2. Bader, G.D., Hogue, C.W.: Analyzing yeast protein-protein interaction data obtained from different sources. Nature Biotechnology 20(10), 991–997 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological) 57(1), 289–300 (1995)

    Google Scholar 

  4. Betzler, N., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithms and hardness results for some graph motif problems. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 31–43. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: Proc. 39th STOC, New York, pp. 67–74 (2007)

    Google Scholar 

  6. Boyle, E.I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J.M., Sherlock, G.: GO:TermFinder—open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics 20(18), 3710–3715 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    Google Scholar 

  8. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Borderlines for finding connected motifs in vertex-colored graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Ferro, A., Giugno, R., Mongiovì, M., Pulvirenti, A., Skripin, D., Shasha, D.: Graphfind: enhancing graph searching by low support data mining techniques. BMC Bioinformatics 9(suppl. 4), 1471–2105 (2008)

    Google Scholar 

  10. FlyBase-Consortium. The FlyBase database of the drosophila genome projects and community literature. Nucleic Acids Research, 31(1):172–175 (2003)

    Google Scholar 

  11. Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L.J., Bastuck, S., Dumpelfeld, B., et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084), 631–636 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. GO Consortium. Amigo (September 2008), http://amigo.geneontology.org/

  13. Kalaev, M., Bafna, V., Sharan, R.: Fast and accurate alignment of multiple protein networks. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 246–256. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Kelley, B.P., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B.R., Ideker, T.: PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Research 32(Web Server issue) (July 2004)

    Google Scholar 

  15. Krogan, N.J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N., Tikuisis, A.P., et al.: Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature 440(7084), 637–643 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. Lacroix, V., Fernandes, C., Sagot, M.: Motif search in graphs: Application to metabolic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(4), 360–368 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics, vol. 29. North-Holland, Amsterdam (1986)

    Google Scholar 

  18. Narayanan, M., Karp, R.M.: Comparing protein interaction networks via a graph match-and-split algorithm. Journal of Computational Biology 14(7), 892–907 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  20. Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T.K., Gronborg, M., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Research 13(10), 2363–2371 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of metabolic pathways. Bioinformatics 21(16), 3401–3408 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. Reguly, T., Breitkreutz, A., Boucher, L., Breitkreutz, B.J., Hon, G.C., Myers, C.L., Parsons, A., Friesen, H., Oughtred, R., Tong, A., et al.: Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. Journal of Biology 5(4), 11 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sharan, R., Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V.: Qnet: A tool for querying protein interaction networks. Journal of Computational Biology 15(7), 913–925 (2008)

    Article  PubMed  Google Scholar 

  24. Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., et al.: Towards a proteome-scale map of the human protein-protein interaction network. Nature 437(7062), 1173–1178 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. Ruepp, A., Brauner, B., Dunger-Kaltenbach, I., Frishman, G., Montrone, C., Stransky, M., Waegele, B., Schmidt, T., Doudieu, O.N., Stümpflen, V., Mewes, H.W.: Corum: the comprehensive resource of mammalian protein complexes. Nucleic Acids Research 36(Database issue), 646–650 (2008)

    Google Scholar 

  26. Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. Journal of Computational Biology 13(2), 133–144 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. SGD project. Saccharomyces genome database (September 2008), http://www.yeastgenome.org/

  28. Sharan, R., Ideker, T., Kelley, B.P., Shamir, R., Karp, R.M.: Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. Journal of Computational Biology 12(6), 835–846 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: QPath: a method for querying pathways in a protein-protein interaction network. BMC Bioinformatics 7, 199 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sohler, F., Zimmer, R.: Identifying active transcription factors and kinases from expression data using pathway queries. Bioinformatics 21(suppl. 2), ii115–ii122 (2005)

    Google Scholar 

  31. Stanyon, C.A., Liu, G., Mangiola, B.A., Patel, N., Giot, L., Kuang, B., Zhang, H., Zhong, J., Finley Jr., R.L.: A drosophila protein-interaction map centered on cell-cycle regulators. Genome Biol. 5(12), R96 (2004)

    Article  Google Scholar 

  32. Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F.H., Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., et al.: A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6), 957–968 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature Genetics 25, 25–29 (2000)

    Google Scholar 

  34. Xenarios, I., Salwínski, L., Joyce, X., Higney, P., Kim, S., Eisenberg, D.: Dip, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Research 30, 303–305 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, Q., Sze, S.-H.: Path matching and graph matching in biological networks. Journal of Computational Biology 14(1), 56–67 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. Yu, et al.: High-quality binary protein interaction map of the yeast interactome network. Science 322(5898), 104–110 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng, Y., Szustakowski, J.D., Fortnow, L., Roberts, R.J., Kasif, S.: Computational identification of operons in microbial genomes. Genome Research 12(8), 1221–1230 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R. (2009). Topology-Free Querying of Protein Interaction Networks. In: Batzoglou, S. (eds) Research in Computational Molecular Biology. RECOMB 2009. Lecture Notes in Computer Science(), vol 5541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02008-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02008-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02007-0

  • Online ISBN: 978-3-642-02008-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics