Skip to main content

Lifting Prediction to Alignment of RNA Pseudoknots

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5541))

Abstract

Prediction and alignment of RNA pseudoknot structures are NP-hard. Nevertheless, several efficient prediction algorithms by dynamic programming have been proposed for restricted classes of pseudoknots. We present a general scheme that yields an efficient alignment algorithm for arbitrary such classes. Moreover, we show that such an alignment algorithm benefits from the class restriction in the same way as the corresponding structure prediction algorithm does. We look at five of these classes in greater detail. The time and space complexity of the alignment algorithm is increased by only a linear factor over the respective prediction algorithm. For four of the classes, no efficient alignment algorithms were known. For the fifth, most general class, we improve the previously best complexity of O(n 5 m 5) time to O(nm 6), where n and m denote sequence lengths. Finally, we apply our fastest algorithm with O(nm 4) time and O(nm 2) space to comparative de-novo pseudoknot prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Couzin, J.: Breakthrough of the year. Small RNAs make big splash. Science 298(5602), 2296–2297 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Washietl, S., Hofacker, I.L., Lukasser, M., Huttenhofer, A., Stadler, P.F.: Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat. Biotechnol. 23(11), 1383–1390 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Staple, D.W., Butcher, S.E.: Pseudoknots: RNA structures with diverse functions. PLoS Biol. 3(6), e213 (2005)

    Article  Google Scholar 

  4. Xayaphoummine, A., Bucher, T., Thalmann, F., Isambert, H.: Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations. Proc. Natl. Acad. Sci. USA 100(26), 15310–15315 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lyngso, R.B., Pedersen, C.N.S.: Pseudoknots in RNA secondary structures. In: Proc. of the Fourth Annual International Conferences on Compututational Molecular Biology (RECOMB 2000). ACM Press, New York (2000) BRICS Report Series RS-00-1

    Google Scholar 

  6. Do, C.B., Woods, D.A., Batzoglou, S.: CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22(14), e90–e98 (2006)

    Article  Google Scholar 

  7. Will, S., Reiche, K., Hofacker, I.L., Stadler, P.F., Backofen, R.: Inferring non-coding RNA families and classes by means of genome-scale structure-based clustering. PLOS Computational Biology 3(4), e65 (2007)

    Article  Google Scholar 

  8. Siebert, S., Backofen, R.: MARNA: multiple alignment and consensus structure prediction of RNAs based on sequence structure comparisons. Bioinformatics 21(16), 3352–3359 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. Gorodkin, J., Heyer, L., Stormo, G.: Finding the most significant common sequence and structure motifs in a set of RNA sequences. Nucleic Acids Res. 25(18), 3724–3732 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Havgaard, J.H., Torarinsson, E., Gorodkin, J.: Fast pairwise structural RNA alignments by pruning of the dynamical programming matrix. PLoS Comput. Biol. 3(10), 1896–1908 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. Mathews, D.H., Turner, D.H.: Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. Journal of Molecular Biology 317(2), 191–203 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Harmanci, A.O., Sharma, G., Mathews, D.H.: Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign. BMC Bioinformatics 8, 130 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bauer, M., Klau, G.W., Reinert, K.: Accurate multiple sequence-structure alignment of RNA sequences using combinatorial optimization. BMC Bioinformatics 8, 271 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. Journal of Molecular Biology 285(5), 2053–2068 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars for RNA structure prediction. Theoretical Computer Science 210, 277–303 (1999)

    Article  Google Scholar 

  16. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)

    Article  Google Scholar 

  17. Deogun, J.S., Donis, R., Komina, O., Ma, F.: RNA secondary structure prediction with simple pseudoknots. In: APBC 2004: Proceedings of the second conference on Asia-Pacific bioinformatics, Darlinghurst, pp. 239–246. Australian Computer Society, Inc., Australia (2004)

    Google Scholar 

  18. Dirks, R.M., Pierce, N.A.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. J. Comput. Chem. 24(13), 1664–1677 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5, 104 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Evans, P.A.: Finding common RNA pseudoknot structures in polynomial time. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 223–232. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R., Bateman, A.: Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Research 33(Database Issue), D121–D124 (2005)

    Article  Google Scholar 

  22. Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA structures. Journal of Computational Biology 9(2), 371–388 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. Washietl, S., Hofacker, I.L., Stadler, P.F.: Fast and reliable prediction of noncoding RNAs. Proc. Natl. Acad. Sci. USA 102(7), 2454–2459 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Missal, K., Rose, D., Stadler, P.F.: Non-coding RNAs in Ciona intestinalis. Bioinformatics 21(suppl. 2), ii77–ii78 (2005)

    Google Scholar 

  25. Evans, P.A.: Finding common subsequences with arcs and pseudoknots. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, pp. 270–280. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  26. Möhl, M., Will, S., Backofen, R.: Fixed parameter tractable alignment of RNA structures including arbitrary pseudoknots. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 69–81. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9, 133–148 (1981)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, S., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Monatshefte Chemie 125, 167–188 (1994)

    Article  CAS  Google Scholar 

  29. Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA pseudoknotted structures. Theoretical Computer Science 320(1), 35–50 (2004)

    Article  Google Scholar 

  30. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., Eddy, S.R.: Rfam: an RNA family database. Nucleic Acids Research 31(1), 439–441 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siebert, S., Backofen, R.: Methods for multiple alignment and consensus structure prediction of RNAs implemented in MARNA. Methods Mol. Biol. 395, 489–502 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302(1), 205–217 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Möhl, M., Will, S., Backofen, R. (2009). Lifting Prediction to Alignment of RNA Pseudoknots. In: Batzoglou, S. (eds) Research in Computational Molecular Biology. RECOMB 2009. Lecture Notes in Computer Science(), vol 5541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02008-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02008-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02007-0

  • Online ISBN: 978-3-642-02008-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics