Skip to main content

Spatial Clustering of Multivariate Genomic and Epigenomic Information

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5541))

Abstract

The combination of fully sequence genomes and new technologies for high density arrays and ultra-rapid sequencing enables the mapping of gene-regulatory and epigenetics marks on a global scale. This new experimental methodology was recently applied to map multiple histone marks and genomic factors, characterizing patterns of genome organization and discovering interactions among processes of epigenetic reprogramming during cellular differentiation. The new data poses a significant computational challenge in both size and statistical heterogeneity. Understanding it collectively and without bias remains an open problem. Here we introduce spatial clustering - a new unsupervised clustering methodology for dissection of large, multi-track genomic and epigenomic data sets into a spatially organized set of distinct combinatorial behaviors. We develop a probabilistic algorithm that finds spatial clustering solutions by learning an HMM model and inferring the most likely genomic layout of clusters. Application of our methods to meta-analysis of combined ChIP-seq and ChIP-chip epigenomic datasets in mouse and human reveals known and novel patterns of local co-occurrence among histone modification and related factors. Moreover, the model weaves together these local patterns into a coherent global model that reflects the higher level organization of the epigenome. Spatial clustering constitutes a powerful and scalable analysis methodology for dissecting even larger scale genomic dataset that will soon become available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barski, A., et al.: High-resolution profiling of histone methylations in the human genome. Cell 129(4), 823–837 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. Li, X.Y., et al.: Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol. 6(2), e27 (2008)

    Article  Google Scholar 

  3. Meissner, A., et al.: Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205), 766–770 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mikkelsen, T.S., et al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153), 553–560 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, Z., et al.: Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40(7), 897–903 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, C.L., et al.: Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol. 3(10), e328 (2005)

    Article  Google Scholar 

  7. Guenther, M.G., et al.: A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130(1), 77–88 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gal-Yam, E.N., et al.: Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc. Natl. Acad. Sci. USA 105(35), 12979–12984 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kondo, Y., et al.: Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat. Genet. 40(6), 741–750 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. Moving AHEAD with an international human epigenome project. Nature 454(7205), 711–715 (2008)

    Google Scholar 

  11. Fu, Y., et al.: The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 4(7), e1000138 (2008)

    Article  Google Scholar 

  12. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3-4), 281–297 (1999)

    Article  CAS  PubMed  Google Scholar 

  13. Eisen, M.B., et al.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95(25), 14863–14868 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tanay, A., et al.: Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc. Natl. Acad. Sci. USA 101(9), 2981–2986 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Segal, E., et al.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34(2), 166–176 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Series in Statistics, p. 533. Springer, Heidelberg (2001)

    Book  Google Scholar 

  17. Kuznetsov, V.A., et al.: Computational analysis and modeling of genome-scale avidity distribution of transcription factor binding sites in chip-pet experiments. Genome Inform. 19, 83–94 (2007)

    CAS  PubMed  Google Scholar 

  18. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  19. Hubbard, T., et al.: The Ensembl genome database project. Nucleic. Acids Res. 30(1), 38–41 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kent, W.J., et al.: The human genome browser at UCSC. Genome Res. 12(6), 996–1006 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guelen, L., et al.: Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197), 948–951 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. Kim, T.H., et al.: Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128(6), 1231–1245 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schuettengruber, B., et al.: Genome regulation by Polycomb and trithorax proteins. Cell 128(4), 735–745 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Vakoc, C.R., et al.: Profile of histone lysine methylation across transcribed mammalian chromatin. Mol. Cell. Biol. 26(24), 9185–9195 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ooga, M., et al.: Changes in H3K79 methylation during preimplantation development in mice. Biol. Reprod. 78(3), 413–424 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. Hon, G., Ren, B., Wang, W.: ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. PLoS Comput. Biol. 4(10), e1000201 (2008)

    Article  Google Scholar 

  27. Boyer, L.A., et al.: Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441(7091), 349–353 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. Lee, T.I., et al.: Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125(2), 301–313 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bernstein, B.E., et al.: A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2), 315–326 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jaschek, R., Tanay, A. (2009). Spatial Clustering of Multivariate Genomic and Epigenomic Information. In: Batzoglou, S. (eds) Research in Computational Molecular Biology. RECOMB 2009. Lecture Notes in Computer Science(), vol 5541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02008-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02008-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02007-0

  • Online ISBN: 978-3-642-02008-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics