Skip to main content

On Some Elliptic Problems in the Study of Selfdual Chern-Simons Vortices

  • Chapter
  • First Online:
Geometric Analysis and PDEs

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1977))

Abstract

In these lectures we use an approach introduced by Taubes (cf. [JT]) in the study of selfdual vortices for the abelian-Higgs model, in order to describe vortex configurations for the Chern-Simons (CS in short) theory discussed in [D1]. Notice that the abelian-Higgs model corresponds (in a non-relativistic context) to the bi-dimensional Ginzburg-Landau (GL in short) model (cf. [GL], 1[DGP]), for which much has been accomplished in recent years also away from the selfdual regime. In this respect, beside the seminal work of Bethuel- Brezis-Helein (cf. [BBH]), we mention for example: [BeR], [JS1],[JS2], [Lin1], [Lin2], [LR1], [LR2], [PiR], [PR] and the recent monograph by Sandier-Safarty [SS]. However, the methods and techniques introduced for the GL-model do not seem to apply as successfully for the CS-model (see the attemps of Kurzke-Sprin [KS1], [KS2] and Han-Kim in [HaK]). Thus, so far a rigorous mathematical analysis of CS-vortices has been possible only at the selfdual regime where Taubes approach applies equally well and allows one to reduce the vortex problem to the study of elliptic problems involving exponential nonlinearities. In this way it has been possible to treat many relevant selfd- ual theories of interest in theoretical physics by means of nonlinear analysis, see [Y1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Abrikosov, On the magnetic properties of superconductors of second group, Sov. Phys. JETP 5 (1957), 1174–1182.

    Google Scholar 

  2. D.R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128 (1988), 385–398.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Aitchinson, A. Hey, Gauge theories in Particle physics, IoP Publisher vol. 1 (2002), vol. 2 (2003).

    Google Scholar 

  4. J. Ambjorn, P. Olesen, On Electroweak magnetism, Nucl. Phys. B 218 (1989), 67–71.

    Google Scholar 

  5. J. Ambjorn, P. Olesen, A condensate solution of the classical electroweak theory which interpolates between the broken and symmetric phase, Nucl. Phys. B 330 (1990), 193–204.

    Article  Google Scholar 

  6. J. Ambjorn, P. Olesen A magnetic condensate solution of the classical Electroweak theory, Phys. Lett. B 218 (1989), 67–71.

    Article  Google Scholar 

  7. M.F. Atiyah, V.G. Drinfeld, N.J. Hitchin, Yu.I Mannin, Constraction of Instantons, Phys. Lett. A 65 (1978), 185–187.

    Article  MathSciNet  MATH  Google Scholar 

  8. M.F. Atiyah and N.J. Hitchin, The Geometry and Dynamics of Magnetic Monopoles, Princeton Univ. Press, Princeton (1988).

    MATH  Google Scholar 

  9. M.F. Atiyah, N.J. Hitchin, I.M. Singer, Deformation of Instantons, Proc. Natl. Acad. Sci. USA 74, (1997), 2662–2663.

    Article  MathSciNet  Google Scholar 

  10. M.F. Atiyah, N.J. Hitchin, I.M. Singer, Selfduality in four dimensional Riemannian geometry, Proc. Roy Soc. A 362 (1978), 425–461.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, Berlin Heidelberg New York, (1998).

    MATH  Google Scholar 

  12. S. Baraket, F. Pacard, Construction of singular limit for a semilinear elliptic equation in dimension 2, Calc. Var. P.D.E, 6 (1998), 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Bandle, Isoperimetric Inequalities and Applications, Pitman A. Publishing 7, (1980).

    Google Scholar 

  14. D. Bartolucci, C.C. Chen, C.S. Lin, G. Tarantello, Profile of blow-up solutions to mean field equations with singular data, Comm. P.D.E. 29, n. 7–8 (2004), 1241–1265.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Bartolucci, G. Tarantello, The Liouville equation with singular data: a concentration-compactness principle via a local representation formula, J. Diff. Eq. 185 (2002), 161–180.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Bartolucci, G. Tarantello, Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Comm. Math. Phys. 229 (2002), 3–47.

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Beckner, Sharp Sobolev inequalityies on the sphere and the Moser-Trudinger inequality Ann. of Math. 138 (1993), 213–242.

    Article  MathSciNet  MATH  Google Scholar 

  18. A.A. Belavin, A.M. Polyakov, A.S. Schwartz, Yu.S. Tyupkin, Pseudoparticle solutions of the Yang Mills Equations, Phys. Lett. B (1975), 85–87.

    Google Scholar 

  19. J. Berger, J. Rubistein, On the zero set of the wave function in superconductivity, Comm. Math. Phys. 202, n. 3 (1999), 621–628.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Bethuel, H. Brezis, F. Helein, Ginzburg Landau Vortices, Birkhauser, 1994.

    Google Scholar 

  21. E.B. Bogomolnyi, The stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976), 449–454.

    MathSciNet  Google Scholar 

  22. S. Bradlow, Vortices in Holomorphic line bundles over closed Kahler Manifolds, Comm. Math. Phys. 135 (1990), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Bradlow, Special metrics and solvability for holomorphic bundles with global sections, J. Diff. Geom. 33 (1991), 169–214.

    MathSciNet  MATH  Google Scholar 

  24. H. Brezis, Y.Y. Li, I. Shafrir, A sup + inf inequality for some nonlinear elliptic equations involving exponential nonlinearities, J. Funct. Anal. 115 (1993), 344–358.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Brezis, F. Merle, Uniform estimates and blow-up behavior for solutions of −Δu = V (x)e u in two dimensions, Comm. P.D.E. 16 (1991), 1223–1253.

    Article  MathSciNet  MATH  Google Scholar 

  26. X. Cabré, M. Lucia, M. Sanchon, On the minimizers of a Moser-Trudinger type inequality, Comm. P.D.E. 30, n. 7–9 (2005), 1315–1330.

    Article  MATH  Google Scholar 

  27. L. Caffarelli, Y. Yang, Vortex condensation in the Chern-Simons-Higgs model, Comm. Math. Phys., 168 (1995), 154–182.

    Article  MathSciNet  Google Scholar 

  28. E. Caglioti, P.L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations, a statistical mechanics description, part I, Comm. Math. Phys. 143 (1992), 501–525.

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Caglioti, P.L. Lions, C. Marchioro C., M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations, a statistical mechanics description, part II, Comm. Math. Phys. 174 (1995), 229–260.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Cangemi, C. Lee, Selfdual Chern-Simons solitons and (2 + 1)-dimensional Einstein gravity, Phys. Review D 46, n. 10 (1992), 4768–4771.

    Article  MathSciNet  Google Scholar 

  31. D. Chae, Existence of multistrings solutions of the selfgravitating massive W-boson, Lett. Math. Phys. 73, n. 2 (2005), 123–134.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Chae, On the elliptic system arising from a self-gravitating Born-Infeld Abelian Higgs theory, Nonlinearity 18, n. 4 (2005), 1823–1833.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Chae, Existence of the semilocal Chern-Simons vortices, J. Math. Phys. 46, n. 4 (2005), 042303, 10 pp.

    Google Scholar 

  34. D. Chae, On the multi-string solutions of the self-dual static Einstein-Maxwell-Higgs system, Calc. Var. PDE 20, n. 1 (2004), 47–63.

    Article  MathSciNet  MATH  Google Scholar 

  35. D. Chae, K. Choe, Existence of selfgravitating Chern-Simons vortices, J. Math. Phys. 44, n. 12 (2003), 5616–5636.

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Chae, O. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic selfdual Chern-Simons theory, Comm. Math. Phys. (2000), 119–142.

    Google Scholar 

  37. D. Chae, O. Imanuvilov, Non-topological solutions in the generalized self-dual Chern-Simons-Higgs theory, Calc. Var. PDE 16, n. 1 (2003), 47–61.

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Chae, O. Imanuvilov, Non-topological multivortex solutions to the self-dual Maxwell-Chern-Simons-Higgs systems, J. Funct. Anal. 196, n. 1 (2002), 87–118.

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Chae, N. Kim, Topological multivortex solutions of the selfdual Maxwell-Chern-Simons-Higgs system, Jour. Diff. Eq. 134 (1997), 154–182.

    Article  MathSciNet  MATH  Google Scholar 

  40. D. Chae, N. Kim, Vortex condensates in the relativistic selfdual Maxwell-Chern-Simons Higgs system, Preprint.

    Google Scholar 

  41. D. Chae, H.S. Nam, On the condensate multivortex solutions of the self-dual Maxwell-Chern-Simons CP(1) model, Ann. Henri Poincaré 2, n. 5 (2001), 887–906.

    Article  MathSciNet  MATH  Google Scholar 

  42. D. Chae, H. Ohtsuka, T. Suzuki, Some existence results for solutions to SU(3) Toda system. Calc. Var. PDE 24, n. 4 (2005), 403–429.

    Article  MathSciNet  MATH  Google Scholar 

  43. D. Chae, G. Tarantello, On Planar Electroweak vortices Ann. IHP Analyse Non Lineaire, AN21 (2004), 187–207.

    MathSciNet  Google Scholar 

  44. D. Chae, G. Tarantello, Selfgravitating Electroweak Strings, J. Diff. Eq. 213 (2005), 146–170.

    Article  MathSciNet  MATH  Google Scholar 

  45. H. Chan, C.C. Fu, C.S. Lin, Non-topological multi-vortex solutions to the selfdual Chern-Simons-Higgs equation, Comm. Math. Phys. 231 (2002), 189–221.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Chai, Chain-N.P. Nelipa, Introduction to Gauge Field Theory, Springer, Berlin New York, (1984).

    Google Scholar 

  47. A. Chang, C.C. Chen, C.S. Lin, Extremal functions for a mean field equation in two dimension, Lectures on partial differential equations, New Stud. Adv. Math., 2, Int. Press, Somerville, MA, (2003), 61–93.

    Google Scholar 

  48. A. Chang, P. Yang, Conformal deformation of metric on S 2, J. Diff. Geom. 27 (1988), 259–296.

    MathSciNet  MATH  Google Scholar 

  49. A. Chang, P. Yang, Prescribing Gaussian curvature on S 2, Acta Math., 159 (1987), 215–259.

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Chang, P. Yang, The inequality of Moser-Trudinger and Applications to Conformal Geometry, Comm. Pure Appl. Math. 56 (2003), 1135–1150.

    Article  MathSciNet  MATH  Google Scholar 

  51. S. Chanillo, M. Kiessling, Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Comm. Math. Phys. 160 (1994), 217–238.

    Article  MathSciNet  MATH  Google Scholar 

  52. S. Chanillo, M. Kiessling, Conformally invariant systems of nonlinear PDE of Liouville type Geom. Funct. Analysis 5 (1995) 924–947.

    Article  MathSciNet  MATH  Google Scholar 

  53. S. Chanillo, M. Kiessling, Surfaces with prescribed scalar curvature Duke Math. J. 105 (2002) 309–353.

    MathSciNet  Google Scholar 

  54. C.C. Chen, C.S. Lin, Sharp Estimates for Solutions of Multi Bubbles in Compact Riemann Surfaces, Comm. Pure Appl. Math. 55 (2002) 728–771.

    Article  MathSciNet  MATH  Google Scholar 

  55. C.C. Chen, C.S. Lin, Topological Degree for a Mean Field Equation on Riemann Surfaces, Comm. Pure Appl. Math. 56 (2003), 1667–1727.

    Article  MathSciNet  MATH  Google Scholar 

  56. C.C. Chen, C.S. Lin, On the symmetry of blow up solutions to a mean field equation, Ann. IHP Analyse Nonlineaire 18 (2001), 271–296.

    MATH  Google Scholar 

  57. C.C. Chen, C.S. Lin, A sharp sup + inf estimate for a nonlinear equation in the plane Comm. Anal. Geom. 6 (1998), 1–19.

    MathSciNet  MATH  Google Scholar 

  58. C.C. Chen, C.S. Lin, G. Wang, Concentration phenomena of two-vortex solutions in a Chern-Simons model. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5 3 n. 2 (2004), 367–397.

    MathSciNet  Google Scholar 

  59. W. Chen, W. Ding, Scalar curvature on S 2, Trans. AMS (1987), 365–382.

    Google Scholar 

  60. W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615–623.

    Article  MathSciNet  MATH  Google Scholar 

  61. W. Chen, C. Li, Qualitative properties of solutions of some nonlinear elliptic equations in R 2, Duke Math. J. 71 (1993), 427–439.

    Article  MathSciNet  MATH  Google Scholar 

  62. W. Chen, C. Li, Prescribing Gaussian curvature on surfaces with conical singularities, J. Geom. Anal. 1 (1991), 359–372.

    Article  MathSciNet  MATH  Google Scholar 

  63. X.A. Chen, A Trudinger inequality on surfaces with conical singularities, Proc. Amer. Math. Soc. 108 (1990), 821–832.

    MathSciNet  MATH  Google Scholar 

  64. X.X. Chen, Remarks on the existence of branch bubbles on the blow up analysis of equation −Δu = e u in dimension two, Comm. Anal. Geom. 7 (1999), 295–302.

    MathSciNet  MATH  Google Scholar 

  65. X. Chen, S. Hastings, J. McLeod, Y. Yang, A nonlinear elliptic equation arising from gauge field theory and cosmology, Proc Roy. Soc. Lond. A (1994), 453–478.

    Google Scholar 

  66. F. Chiacchio, T. Ricciardi Multiplicity for a selfdual CP(1) Maxwell-Chern-Simons model, NoDEA 13 (2007), 563–584.

    Article  MathSciNet  MATH  Google Scholar 

  67. M. Chipot, I. Shafrir, G. Wolansky, On the solutions of Liouville systems, Jour. Diff. Eq. 140 (1997), 59–105, Erratum Jour. Diff. Eq. 178 (2002), 630.

    Article  MathSciNet  MATH  Google Scholar 

  68. Y.M. Cho, D. Maison, Monopole configurations in Weinberg-Salam model, Phys. Rev. Lett. B 391 (1997), 360–365.

    MathSciNet  Google Scholar 

  69. K. Choe, Uniqueness in Chern-Simons theory, J. Math. Phys. 46 (2005), n. 1, 012305.

    Article  MathSciNet  Google Scholar 

  70. K. Choe, Asymptotic behavior of condensate solutions in the Chern-Simons-Higgs theory, J. Math. Phys. to appear.

    Google Scholar 

  71. K. Choe, N. Kim, Blow-up analysis of the selfdual Chern-Simons-Higgs vortex equation, Ann. IHP Analyse Non Lineaire, to appear.

    Google Scholar 

  72. K. Choe, H.S. Nam, Existence and uniqueness of Topological Multivortex solutions of the Selfdual Chern-Simons CP(1) Model, Nonlinear Anal. 66 (2007), 2794–2813.

    Article  MathSciNet  MATH  Google Scholar 

  73. K.S. Chou, T.Y.H. Wan, Asymptotic radial symmetry for solutions of Δu + exp u = 0 in a punctured disc, Pacific J. of Math. 163 (1994), 269–276.

    MathSciNet  MATH  Google Scholar 

  74. J. Dalbeault, M.J. Esteban, G. Tarantello, The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities in two space dimensions, Ann. Sc. Nor. Pisa vol VII, (2008), 313–341.

    Google Scholar 

  75. M. Del Pino, M. Kowalczyk, M. Musso Singular limits in Liouville-type equations, Calc. Var. PDE, 24 (2005), 47–81.

    Article  MathSciNet  MATH  Google Scholar 

  76. W. Ding, J. Jost, J. Li, X. Peng, G. Wang, Self duality equations for Ginzburg-Landau and Seiberg-Witten type functionals with 6th order potential, Comm. Math. Phys. 217 (2001), 383–407.

    Article  MathSciNet  MATH  Google Scholar 

  77. W. Ding, J. Jost, J. Li, G. Wang, The differential equation Δu = 8π ‐ 8πe u on a compact Riemann surface, Asian. J. Math. 1 (1997), 230–248.

    MathSciNet  MATH  Google Scholar 

  78. W. Ding, J. Jost, J. Li, G. Wang, An analysis of the two-vortex case in the Chern-Simons-Higgs model, Calc. Var. and P.D.E. 7 (1998), 87–97.

    Article  MathSciNet  MATH  Google Scholar 

  79. W. Ding, J. Jost, J. Li, G. Wang, Existence results for mean field equations, Ann. IHP Analyse Non Linéaire 16 (1999), 653–666.

    Article  MathSciNet  MATH  Google Scholar 

  80. Z. Djadli, Existence results for the mean field problem in Riemann surfaces of all genus, Comm. Contemp. Math., Vol. 10 (2008), 205–220.

    Article  MathSciNet  MATH  Google Scholar 

  81. O. Druet, Multibumps analysis in Dimension 2: Quantification of blow-up levels, Duke Math. J. 132 (2006), 217–269.

    Article  MathSciNet  MATH  Google Scholar 

  82. S. Donaldson, P. Kronheimer, The geometry of four-manifolds, Oxford Univ. Press (1990).

    Google Scholar 

  83. Q. Du, M.D. Gunzburger, J.S. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Review, 34, 1, (1992), 54–81.

    Article  MathSciNet  MATH  Google Scholar 

  84. G. Dunne, Self-Dual Chern-Simons Theories, Lect. Notes in Phys., M 36 New Series, Springer, (1995).

    Google Scholar 

  85. G. Dunne, Mass degeneracies in self-dual models, Phys. Lett. B 345 (1995), 452–457.

    Article  MathSciNet  Google Scholar 

  86. G. Dunne, Aspects of Chern Simons theory, Les Houches Lectures on section LXIX: ”Topological Aspects of low dimensional systems, Eds A. Comtet, T. Jolicoeur, S. Ouvry and F. David, EDP Sciences Springer (1998), 55–175.

    Google Scholar 

  87. P. Esposito, Blow up solutions for a Liouville equation with singular data, SIAM J. Math. Anal. 36, n. 4 (2005), 1310–1345.

    Article  MathSciNet  MATH  Google Scholar 

  88. P. Esposito, M. Grossi, A. Pistoia, On the existence of blowing-up solutions for a mean field equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, n. 2 (2005), 227–257.

    Article  MathSciNet  MATH  Google Scholar 

  89. B. Felsager, Geometry, Particle and Fields, Springer, Berlin and New York (1998).

    Google Scholar 

  90. L. Fontana, Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv. 68 (1993), 415–454.

    Article  MathSciNet  MATH  Google Scholar 

  91. J. Frohlich, The fractional Quantum Hall effect, Chern-Simons theory and integral lettice, Proc. Internat. Congr. Math. Birkhauser, Basil (1995), 75–105.

    Google Scholar 

  92. J. Frohlich, P. Marchetti, Quantum field theory of anyons, Lett. Math. Phys. 16 (1988), 347–358.

    Article  MathSciNet  Google Scholar 

  93. J. Frohlich, P. Marchetti, Quantum field theory of vortices and anyons, Comm. Math. Phys. 121 (1989), 177–223.

    Article  MathSciNet  Google Scholar 

  94. O. Garcia-Prada, A direct existence proof for the vortex equation over a compact Riemannian surface, Bull. London Math. Soc. 26 (1994), 88–96.

    Article  MathSciNet  MATH  Google Scholar 

  95. O. Garcia-Prada, Invariant connections and vortices, Comm. Math. Phys. 156 (1993), 527–546.

    Article  MathSciNet  MATH  Google Scholar 

  96. O. Garcia-Prada, Dimensional reduction of stable bundles vortices and stablepairs, Intern. J. Math. 5 (1994), 1–52.

    Article  MathSciNet  MATH  Google Scholar 

  97. V. Ginzburg and L. Landau, On the theory of Supercondictivity, Zh. Eksper. Theor. Fiz. 20 (1950) 1064–1082. Translated in “Collected papers of L. Landau” ed. D. Ter Haar Pergamon, New York (1965), 546–568.

    Google Scholar 

  98. D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, (1983).

    Google Scholar 

  99. M. Gockeller, T. Schucker, Differential Geometry, Gauge Theory and Gravity, Cambridge Univ. Press (1990).

    Google Scholar 

  100. P. Goddard, D.I. Olive, Magnetic monopoles in gauge field theories, Rep. Prog. Phys. 41 (1978) 1360–1473.

    Article  Google Scholar 

  101. J. Han, Asymptotics for the vortex condensate solutions in Chern-Simons-Higgs theory, Asymp. Anal. 28 (2001) 31–48.

    MATH  Google Scholar 

  102. J. Han, Asymptotic limit for condensate solutions in the abelian Chern-Simons-Higgs model, Proc. AMS 131 n. 6 (2003) 1839–1845.

    Article  MATH  Google Scholar 

  103. J. Han, Existence of topological multivortex solutions in the selfdual gauge theories, Proc. Royal soc. Edinburgh, 130A (2000), 1293–1309.

    Article  Google Scholar 

  104. J. Han, N. Kim, Non-selfdual Chern-Simons and Maxwell-Chern-Simons vortices in bounded domains, J. Funct. Anal. 221 (2005), 167–204.

    Article  MathSciNet  MATH  Google Scholar 

  105. Z.C. Han, Prescribing Gaussian curvature on S 2, Duke Math. J. 61 (1990), 679–703.

    Article  MathSciNet  MATH  Google Scholar 

  106. M.C. Hong, J. Jost, M. Struwe, Asymtotic limits of a Ginzburg-Landau type functional, Geometric Analysis and the Calculus of Variations for S. Hildebrandt (J. Jost ed.), International Press Boston (1996), 99–123.

    Google Scholar 

  107. N.J. Hitchin, The selfduality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59–126.

    Article  MathSciNet  MATH  Google Scholar 

  108. J. Hong, Y. Kim, P.Y. Pac, Multi-vortex solutions of the Abelian Chern-Simons theory, Phys. Rev. Lett. 64 (1990), 2230–2233.

    Article  MathSciNet  MATH  Google Scholar 

  109. R. Jackiw, E.J. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Lett. 64 (1990), 2234–2237.

    Article  MathSciNet  MATH  Google Scholar 

  110. A. Jaffe, C. Taubes, Vortices and monopoles, Birkhauser, Boston, (1980).

    MATH  Google Scholar 

  111. R.L. Jerrard, H.M. Soner, Dynamics of Ginzburg-Landau vortices. Arch. Rational Mech. Anal. 142, n. 2, (1998), 99–125.

    Article  MathSciNet  MATH  Google Scholar 

  112. R.L. Jerrard, H.M. Soner, The Jacobian and the Ginzburg-Landau energy. Calc. Var. PDE 14, n. 2 (2002), 151–191.

    Article  MathSciNet  MATH  Google Scholar 

  113. J. Jost, C.S. Lin, G. Wang, Analytic aspects of the Toda system: II. Bubbling Behavior and existence of solutions, Comm. Pure Appl. Math. 59 (2006), 526–558.

    Article  MathSciNet  MATH  Google Scholar 

  114. J. Jost, Riemannian Geometry and Geometric Analysis, Spriger-Verlag Berlin, Heidelberg (1998) (second Edition).

    MATH  Google Scholar 

  115. J. Jost, G. Wang, Analytic aspects of the Toda system: I. A Moser-Trudinger inequality, Comm. Pure Appl. Math. 54 (2001), 1289–1319.

    Article  MathSciNet  MATH  Google Scholar 

  116. J. Jost, G. Wang, Classification of solutions of a Toda system in R 2, Int. Math. Res. Not. 6 (2002), 277–290.

    Article  MathSciNet  Google Scholar 

  117. J. Kazdan, Prescribing the curvature of a Riemannian manifold, CBMS Lectures AMS 57, (1984).

    Google Scholar 

  118. J. Kazdan, F. Warner, Existence and conformal deformations of metric with prescribed Gaussian and scalar curvature, Ann. of Math. 101 (1975), 317–331.

    Article  MathSciNet  MATH  Google Scholar 

  119. J. Kazdan, F. Warner, Curvature functions for compact 2-manifolds, Ann. of Math. 99 (1974), 14–47.

    Article  MathSciNet  MATH  Google Scholar 

  120. M.K.H. Kiessling, Statistical mechanics of classical particles with logarithmic interaction, Comm. Pure Appl. Math. 46 (1991), 27–56.

    Article  MathSciNet  Google Scholar 

  121. M.K.H. Kiessling, Statistical mechanics approach to some problems in conformal geometry, Phys. A 79 (2000), 353–368.

    MathSciNet  Google Scholar 

  122. S. Kim, Y. Kim, Selfdual Chern-Simons vortices on Riemann surfaces, J. Math. Phys. 43 (2002), 2355–2362.

    Article  MathSciNet  MATH  Google Scholar 

  123. M. Kurzke, D. Sprin, Gamma limit of the non-selfdual Chern-Simons-Higgs energy, preprint (2005).

    Google Scholar 

  124. M. Kurzke, D. Sprin, Scaling limit of the Chern-Simons-Higgs energy, preprint (2005).

    Google Scholar 

  125. C.H. Lai (ed.), Selected Papers on Gauge Theory of Weak and Electromagnetic Interactions, World Scientific Singapore. 1981.

    Google Scholar 

  126. C. Lee, K. Lee, H. Min, Self-dual Maxwell-Chern-Simons solitons, Phys. Lett. B 252 (1990), 79–83.

    Article  MathSciNet  Google Scholar 

  127. Y.Y. Li, On Nirenberg's problem and related topics, Top. Meth. Nonlin. Anal. 3, n. 2 (1994), 21–233.

    Google Scholar 

  128. Y.Y. Li, Harnack type inequality: the method of moving planes, Comm. Math. Phys. 200 (1999), 421–444.

    Article  MathSciNet  MATH  Google Scholar 

  129. Y.Y. Li, I. Shafrir, Blow up analysis for solutions of −Δu = V(x)e u in dimension two, Ind. Univ. Math. Jour. 43, n. 4 (1994), 1255–1270.

    Article  MathSciNet  MATH  Google Scholar 

  130. C.S. Lin, Uniqueness of solutions to the mean field equations for the spherical Osanger vortex, Arch. Rat. Mech. Anal. 153 (2000), 153–176.

    Article  MATH  Google Scholar 

  131. C.S. Lin, Topological degree for the mean field equation on S 2, Duke Math J. 104 (2000), 501–536.

    Article  MathSciNet  MATH  Google Scholar 

  132. C.S. Lin, M. Lucia, Uniqueness of solutions for a mean field equations on torus, J. Diff. Eq. 229 (2006), 172–185.

    Article  MathSciNet  MATH  Google Scholar 

  133. C.S. Lin, M. Lucia, One-dimensional symmetry of periodic minimizers for a mean field equations, Ann. Sc. Norm. Pisa 5, n. 6 (2007), 269–290.

    MathSciNet  Google Scholar 

  134. C.S. Lin, C.L. Wang, Elliptic functions, Green functions an the mean field equation on tori, preprint (2006).

    Google Scholar 

  135. F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices. Comm. Pure Appl. Math. 49, n. 4 (1996), 323–359.

    Article  MathSciNet  MATH  Google Scholar 

  136. F.H. Lin, Vortex dynamics for the nonlinear wave equation, Comm. Pure Appl. Math. 52, n. 6, (1999), 737–761.

    Article  MathSciNet  Google Scholar 

  137. F.H. Lin, T. Riviere, Quantization property for moving line vortices, Comm. Pure App. Math. 54, (2001), 826–850.

    Article  MathSciNet  MATH  Google Scholar 

  138. F.H. Lin, T. Riviere, A Quantization property for static Ginzburg-Landau Vortices, Comm. Pure App. Math. 54, (2001), 206–228.

    Article  MathSciNet  MATH  Google Scholar 

  139. J. Liouville, Sur l'equation aux derivées partielles \({{\partial^2 \log \lambda} \over {\partial u \partial v}} \pm {\lambda \over {2a^2}} = 0\), J. Math. Pure Appl. 18 (1853), 71–72.

    Google Scholar 

  140. M. Lucia, A blowing-up branch of solutions for a mean field equation, Calc. Var. and P.D.E. 26 (2006), 313–333.

    Article  MathSciNet  MATH  Google Scholar 

  141. M. Lucia, M. Nolasco, SU(N) Chern-Simons vortex theory and Toda systems, Jour. Diff. Eq. 184, n. 2 (2002), 443–474.

    Article  MathSciNet  MATH  Google Scholar 

  142. M. Lucia, L. Zhang, A priori estimates and uniqueness for some mean field equations, J.D.E. 217 (2005), 154–178.

    Article  MathSciNet  MATH  Google Scholar 

  143. L. Ma, J. Wei, Convergence for a Liouville equation, Comment. Math. Helv. 76 (2001), 506–514.

    Article  MathSciNet  MATH  Google Scholar 

  144. M. Macri', M. Nolasco, Uniqueness of topological solutions for a class of selfdual vortex theories, Proc. Royal Soc. Edin. 137 (2007), 847–866.

    Article  MathSciNet  Google Scholar 

  145. M. Macri', M. Nolasco, T. Ricciardi, Asymptotics for selfdual vortices on the torus and on the plane: a technique, SIAM Math. Anal. 37, n. 1 (2005), 1–16.

    Article  MathSciNet  Google Scholar 

  146. A. Malchiodi, C.B. Ndiaye, Some existence results for the Toda system on closed surfaces, preprint (2005).

    Google Scholar 

  147. J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. J. 20 (1971), 1077–1092.

    Article  Google Scholar 

  148. K. Nagashi, T. Suzuki, Asymptotic analysis for a two dimensional elliptic eigenvalue problem with exponentially dominated nonlinearity, Asymp. Anal. 3 (1990), 173–188.

    Google Scholar 

  149. H. Nielsen, P. Olesen, Vortex-Line models for dual strings, Nucl. Phys. B 61 (1973), 45–61.

    Article  Google Scholar 

  150. W.M. Ni, On the elliptic equation Δu + Ke u = 0 and conformal metrics with prescribed Gaussian curvature, Invent. Math. 66 (1982), 343–352.

    Article  MathSciNet  MATH  Google Scholar 

  151. L. Nirenberg, Topics in nonlinear analysis, Courant Lecture Notes AMS (2001).

    Google Scholar 

  152. M. Nolasco, G. Tarantello, Vortex condensates for the SU (3) Chern-Simons theory, Comm. Math. Phys. 213 (2000), 599–639.

    Article  MathSciNet  MATH  Google Scholar 

  153. M. Nolasco, G. Tarantello, On a sharp Sobolev type inequality on two dimensional compact manifolds, Arch. Rat. Mech. Anal. 145 (1998), 161–195.

    Article  MathSciNet  MATH  Google Scholar 

  154. M. Nolasco, G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. P.D.E. 9 (1999), 31–94.

    Article  MathSciNet  MATH  Google Scholar 

  155. M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom. 6 (1971), 247–258.

    MathSciNet  MATH  Google Scholar 

  156. H. Ohtsuka, T. Suzuki, Palais-Smale sequences relative to the Trudinger Moser inequality, Calc. Var. P.D.E. 17 (2003), 235–255.

    MathSciNet  MATH  Google Scholar 

  157. H. Ohtsuka, T. Suzuki, Blow-up analysis for Liouville-type equations in selfdual-gauge field theories, Comm. Contemp. Math. 7 (2005), 117–205.

    Article  MathSciNet  Google Scholar 

  158. P. Olesen, Soliton condensation in some selfdual Chern-Simons theories, Phys. Lett. B 265 (1991), 361–365.

    Article  MathSciNet  Google Scholar 

  159. E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys. 86 (1982), 321–326.

    Article  MathSciNet  MATH  Google Scholar 

  160. F. Pacard, T. Riviere, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications 39, Birkhauser Boston, Inc., Boston, MA, (2000).

    Google Scholar 

  161. R.D. Parks, Superconductivity, vol. 1 and 2, Marcel Dekker publ. (1969).

    Google Scholar 

  162. L.M. Pismen, J. Rubinstein, Motion of vortex lines in the Ginzburg-Landau model. Phys. D. 47, n. 3 (1991), 353–360.

    Article  MathSciNet  MATH  Google Scholar 

  163. S. Pokorski et al. Gauge Field Theories, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press (2000).

    Google Scholar 

  164. J. Prajapat, G. Tarantello, On a class of elliptic problems in R 2: Symmetry and Uniqueness results, Proc. Roy. Soc. Edinburgh 131A (2001), 967–985.

    Article  MathSciNet  Google Scholar 

  165. M.K. Prasad, C.M. Sommerfield, Exact classical solutions for the 't Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett. 35 (1975), 760–762.

    Article  Google Scholar 

  166. C.Quigg, Gauge theory of Strong, Weak and Electroweak interactions, Westview Press (1997).

    Google Scholar 

  167. R. Rajaraman, Solitons and Instantons, North Holland publ. (1982).

    Google Scholar 

  168. T. Ricciardi, Asymptotics for Maxwell-Chern-Simons Multivortices, NonLinear Analysis TMA 50 (2002), 193–1106.

    Article  MathSciNet  Google Scholar 

  169. T. Ricciardi, Multiplicity for a nonlinear fourth order elliptic equation in Maxwell-Chern-Simons vortex theory, Diff. Int. Eq. 17, n. 3–4 (2004), 369–390.

    MathSciNet  MATH  Google Scholar 

  170. T. Ricciardi, On a nonlinear elliptic system from Maxwell-Chern-Simons vortex theory, Asympt. Anal. 2 (2003), 113–126.

    MathSciNet  Google Scholar 

  171. T. Ricciardi, G. Tarantello, Self-dual vortices in the Maxwell-Chern-Simons-Higgs theory, Comm. Pure Appl. Math. 53 (2000), 811–851.

    Article  MathSciNet  MATH  Google Scholar 

  172. T. Ricciardi, G. Tarantello, On a periodic boundary value problem with exponential nonlinearity, Diff. Int. Eqs. 11, n. 5 (1998), 745–753.

    MathSciNet  MATH  Google Scholar 

  173. E. Sandier, S. Serfaty, Vortices in the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications, vol. 70 Birkhauser, Boston (2007).

    MATH  Google Scholar 

  174. J.R. Schrieffer, The Theory of Superconductivity, Benjamin publ. (1964).

    Google Scholar 

  175. I. Shafrir, Une inegalité de type sup + inf pour l'equation −Δu = V(x)e u, C.R. Acad. Sci. Paris 315 (1992), 159–164.

    MathSciNet  MATH  Google Scholar 

  176. I. Shafrir, G. Wolansky, Moser Trudinger and logarithmic HLS inequalities for systems, J. Europ. Math. Sc. 7, n. 4 (2005), 413–448.

    Article  MathSciNet  MATH  Google Scholar 

  177. I. Shafrir, G. Wolansky, The logarithmic HLS inequalities for systems on compact manifolds, J. Funct. Anal. 227 (2005), 200–226.

    Article  MathSciNet  MATH  Google Scholar 

  178. J. Spruck, Y. Yang, The existence of non-topological solutions in the self-dual Chern-Simons theory, Comm. Math. Phys. 149 (1992), 361–376.

    Article  MathSciNet  MATH  Google Scholar 

  179. J. Spruck, Y. Yang, On Multivortices in the Electroweak Theory I: Existence of Periodic Solutions, Comm. Math. Phys. 144 (1992), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  180. J. Spruck, Y. Yang, On Multivortices in the Electroweak Theory II:Existence of Bogomol'nyi solutions in R 2, Comm. Math. Phys. 144 (1992), 215–234.

    Article  MathSciNet  MATH  Google Scholar 

  181. M. Struwe, Variational Methods, Application to Partial Differential Equations and Hamiltonian systems, 3rd edition Springer 34, (2000).

    Google Scholar 

  182. M. Struwe, G. Tarantello, On the multivortex solutions in the Chern-Simons gauge theory, Boll. U.M.I. Sez. B Artic. Ric. Mat. 1 (1998), 109–121.

    MathSciNet  MATH  Google Scholar 

  183. T. Suzuki, Global analysis for a two dimensional elliptic eigenvalue problem with exponential nonlinearity, Ann. I.H.P. Analyse Non Linéaire 9 (1992), 367–398.

    MATH  Google Scholar 

  184. T. Suzuki, Two dimensional Emden-Fowler equations with exponential nonlinearities, Nonlinear Diffusion Equations and their equilibrium state 3 (1992), 493–512, Birkauser, Boston.

    Article  Google Scholar 

  185. G. 't Hooft, Computation of the quantum effects due to a four dimensional pseudoparticle, Phys. Rev. D 14 (1976), 3432–3450.

    Article  Google Scholar 

  186. G. 't Hooft, A property of electric and magnetic flux in non abelian gauge theories, Nucl. Phys. D 153 (1979), 141–160.

    Article  MathSciNet  Google Scholar 

  187. G. Tarantello, Multiple condensates solutions for the Chern-Simons-Higgs theory, J. Math. Phys. 37, n. 8 (1996), 3769–3796.

    Article  MathSciNet  MATH  Google Scholar 

  188. G. Tarantello, On Chern Simons vortex theory, Nonlinear PDE's and physical modeling: Superfluidity, Superconductivity and Reactive flows, H. Berestycki ed. Kluver Academic publ., (2002), 507–526.

    Google Scholar 

  189. G. Tarantello, Selfdual Maxwell-Chern-Simons vortices, Milan J. Math. 72 (2004), 29–80.

    Article  MathSciNet  MATH  Google Scholar 

  190. G. Tarantello, Analitycal aspects of Liouville-type equations with singular sources, Handbook of Differential Equations. Stationary partial differential equations, vol 1. Elsevier Sciences, M.Chipot, P.Quittner Eds.

    Google Scholar 

  191. G. Tarantello, A quantization property for blow up solutions of singular Liouville-type equations, Journal Func. Anal. 219 (2005), 368–399.

    Article  MathSciNet  MATH  Google Scholar 

  192. G. Tarantello, An Harnack inequality for Liouville-type equations with singular sources, Indiana Univ. Math J. 54, n.2 (2005), 599–615.

    Article  MathSciNet  Google Scholar 

  193. G. Tarantello, Uniqueness of Selfdual periodic Chern-Simons vortices of topological-type, Calc. Var. PDE, 29 (2007), 191–217.

    Article  MathSciNet  MATH  Google Scholar 

  194. G. Tarantello, Selfdual gauge field vortices: an analytical approach, Progress in Nonlinear Differential Equations and their Applications, vol. 72 Birkhauser, Boston (2008).

    Book  Google Scholar 

  195. C. Taubes, Arbitrary N-vortex solutions for the first order Ginzburg-Landau equations, Comm. Math. Phys. 72 (1980), 277–292.

    Article  MathSciNet  MATH  Google Scholar 

  196. C.H. Taubes, On the equivalence of the first and second order equations for gauges theories, Comm. Math. Phys. 75 (1980), 207–227.

    Article  MathSciNet  MATH  Google Scholar 

  197. C.H. Taubes, The existence of a non-minimal solution to the SU(2) Yang-Mills-Higgs equations in R 3, Part I and II, Comm. Math. Phys. 86 (1982), 257–320.

    Article  MathSciNet  MATH  Google Scholar 

  198. A. Trautmann, Differential geometry for physicists Stony Brook lectures. Monographs and Textbooks in Physical Science, 2. Bibliopolis, Naples, 1984.

    Google Scholar 

  199. N.D. Trudinger, On imbedding into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483.

    MathSciNet  MATH  Google Scholar 

  200. P. Valtancoli, Classical and Chern-Simons Vortices on curved spaces, Int. J. Mod. Phys. A, 7, n. 18 (1990), 4335–4352.

    Article  MathSciNet  Google Scholar 

  201. G. Wang, Moser-Trudinger inequality and Liouville systems, C.R. Acad. Sci. Paris 328 (1999), 895–900.

    Article  MATH  Google Scholar 

  202. G. Wang, J. Wei, On a conjecture of Wolanski, Nonlinear Analysis TMA 48 (2002), 927–937.

    Article  MathSciNet  MATH  Google Scholar 

  203. G. Wang, J. Wei, Steady state solutions of a reaction-diffusion system modelling chemotaxis, Math. Nachr. 233–234 (2002), 221–236.

    Article  MathSciNet  Google Scholar 

  204. R. Wang, The existence of Chern-Simons vortices, Comm. Math. Phys. 137 (1991), 587–597.

    Article  MathSciNet  MATH  Google Scholar 

  205. S. Wang, Y. Yang, Abrikosov's vortices in the critical coupling, SIAM J. Math. Anal. 23 (1992), 1125–1140.

    Article  MathSciNet  MATH  Google Scholar 

  206. E. Witten, Some exact Multipseudoparticle solutions of classical Yang-Mills theory, Phys. Rev. Lett. 38 (1997), 121–124.

    Article  Google Scholar 

  207. G. Wolanski, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity, J. Anal. Math. 59 (1992), 251–272.

    Article  Google Scholar 

  208. C.N. Yang, R. Mills, Conservation of isotopic spin and isotopic invariance, Phys. Rev. Lett. 96 (1954), 191–195.

    MathSciNet  Google Scholar 

  209. Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag New York, (2001).

    MATH  Google Scholar 

  210. Y. Yang, Topological solitons in the Weinberg-Salam theory, Physica D 101 (1997), 55–94.

    Google Scholar 

  211. Y. Yang, The relativistic non-abelian Chern-Simons equations, Comm. Math. Phys. 186 (1997), 199–218.

    Article  MathSciNet  MATH  Google Scholar 

  212. Y. Yang, On a system of nonlinear elliptic equations arising in theoretical physics, J. Func. Anal. (2000), 1–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Tarantello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarantello, G. (2009). On Some Elliptic Problems in the Study of Selfdual Chern-Simons Vortices. In: Chang, SY., Ambrosetti, A., Malchiodi, A. (eds) Geometric Analysis and PDEs. Lecture Notes in Mathematics(), vol 1977. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01674-5_4

Download citation

Publish with us

Policies and ethics