Skip to main content

Conventional Thermal Processes

  • Chapter
  • First Online:
Seawater Desalination

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Thermal desalination processes account for about 50% of the entire desalination market. The remaining market share is dominated by the reverse osmosis (RO) process. The main thermal desalination processes include multi-stage flash desalination (MSF), multiple-effect distillation (MED), and mechanical vapor compression (MVC). Other thermal desalination processes, e.g., solar stills, humidification dehumidification, freezing, etc., are only found on a pilot or experimental scale. Thermal desalination processes consume a larger amount of energy than RO; approximately the equivalent of 10–15 kWh/m3 for thermal processes versus 5 kWh/m3for RO. Irrespective of this, the reliability and massive field experience in thermal desalination keeps its production cost competitive compared to the RO process. Also, the large scale production capacity for a single MSF unit, approximately 75,000 m3/day, is sufficient to provide potable water for 300,000 inhabitants. An increase in production capacity for the MED system has been realised recently, with unit production capacities of up to 30,000 m3/day. This chapter covers various aspects of thermal desalination processes. It includes a review of design, operating, and performance parameters. The analysis for each process includes a brief review of some of the recent literature studies, process descriptions, process models, and an illustration of system design and performance analysis. The chapter is divided into two parts, the first is on evaporation processes, which includes MED and MVC, and the second is on flashing processes, which include MSF. Each section starts with a description and analysis of the individual stage, for either evaporation or flashing. This is to simplify the explanation of the main processes that takes place during evaporation or flashing. Each division gives a complete description of each desalination process, together with the main modelling equations. Performance charts are presented for each system and explained in terms of main design and operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

IDA:

International Desalination Association

LMTD:

Logarithmic Mean Temperature Difference

MED:

Multiple-Effect Distillation

MSF:

Multi-stage Flash

MVC:

Mechanical Vapour Compression

TBT:

Top Brine Temperature

TVC:

Thermal Vapour Compression

References

  1. IDA, Int. Desalination Association, Worldwide Desalting Plants Inventory, 2006.

    Google Scholar 

  2. El-Dessouky, H.T., and Ettouney, H.M., Fundamentals of Salt Water Desalination, Elsevier, New York, USA, 2002.

    Google Scholar 

  3. Tonner, J.B., Hinge, S., and Legorreta, C., Plates – the next breakthrough in thermal desalination, Desalination, 134 (2001) 205–211.

    Article  CAS  Google Scholar 

  4. Yang, L., and Shen, S., Experimental study of falling film evaporation heat transfer outside horizontal tubes, Desalination, 220 (2008) 654–660.

    Article  CAS  Google Scholar 

  5. Renaudin, V., Kafi, F., Alonso, D., and Andreoli, A., Performances of a three-effect plate desalination process, Desalination, 182 (2005) 165–173.

    Article  CAS  Google Scholar 

  6. El-Dessouky, H.T., Alatiqi, I., and Ettouney, H.M., Process synthesis: The multi-stage flash desalination system, Desalination, 115(1998) 155–179.

    Article  CAS  Google Scholar 

  7. Ettouney, H.M., Abdel-Jabbar, N., Mjalli, F.S., and Qiblawy, H., Development of Web Based Computer Package for Simulation of Thermal and Membrane Desalination Processes, final report, Project ID MEDRC-04-AS-001, MEDRC, Muscat, Oman, 2008.

    Google Scholar 

  8. Temstet, C., Canton, G., Laborie, J., and Durante, A., A large high-performance MED plant in Sicily, Desalination, 105 (1996) 109–114.

    Article  CAS  Google Scholar 

  9. de Gunzbourg, J., and Larger, D., Cogeneration applied to very high efficiency thermal seawater desalination plants, Desalination 125 (1999) 203–208.

    Article  Google Scholar 

  10. Ophir, A., and Lokiec, F. Advanced MED process for most economical sea water Desalination, Desalination 182 (2005) 181–192.

    Article  Google Scholar 

  11. Matz, R., and Fisher, U., A comparison of the relative economics of sea water desalination by vapor compression and reverse osmosis for small to medium capacity plants, Desalination, 36 (1981) 137–151.

    Article  Google Scholar 

  12. Lucas, M., and Tabourier, B., The mechanical vapour compression process applied to seawater desalination: a 1500 ton/day unit installed in the Nuclear Power Plant of Flamanville, France, Desalination, 52 (1985) 123–133.

    Article  CAS  Google Scholar 

  13. Matz, R., and Zimerman, Z., Low-temperature vapour compression and multi-effect distillation of seawater. Effects of design on operation and economics. Desalination, 52 (1985) 201–216.

    Article  CAS  Google Scholar 

  14. Kronenberg, G., and Lokiec, F., Low-temperature distillation processes in single- and dual-purpose plants, Desalination, 136 (2001) 189–197.

    Article  CAS  Google Scholar 

  15. Han, J., and Fletcher, L., Falling film evaporation and boiling in circumferential and axial grooves on horizontal tubes, Ind. Eng. Chem. Process Des. Dev., 24 (1985) 570–597.

    Article  CAS  Google Scholar 

  16. Ettouney, H.M., Design of single effect mechanical vapor compression, Desalination, 190 (2006) 1–15.

    Article  CAS  Google Scholar 

  17. Darwish, M.A., Thermal analysis of vapor compression desalination system, Desalination, 69 (1988) 275–295.

    Article  CAS  Google Scholar 

  18. Silver, R.S., Multi-stage flash distillation – the first 10 years, 3rd Int. Sym. On Fresh Water from the Sea, Athens, Greece, 1 (1970) 191–206.

    Google Scholar 

  19. Borsani, R., and Rebagliati, S., Fundamentals and costing of MSF desalination plants and comparison with other technologies, Desalination 182 (2005) 29–37.

    Article  CAS  Google Scholar 

  20. Al-Falah, E., Al-Shuaib, A., Ettouney, H.M., and El-Dessouky, H.T., On-Site training program in desalination plants, Eu. J. Eng. Edu., 26 (2001) 407–418.

    Article  Google Scholar 

  21. Thirumeni, C., Deutsche Babcock Rehabilitation and uprating of Ras Abu Fontas MSF, desalination units: process optimisation and life extension, Desalination 182 (2005) 63–67.

    Article  Google Scholar 

  22. Helal, A.M., Uprating of Umm Al Nar East 4-6 MSF desalination plants, Desalination 159 (2003) 43–60.

    Article  CAS  Google Scholar 

  23. Ettouney, H.M., El-Dessouky, H.T., and Al-Juwayhel, F., Performance of the once through multistage flash desalination, Proc. Inst. Mech. Eng. Part A, Power and Energy, 216 (2002) 229–242.

    Article  Google Scholar 

  24. Abdel-Jabbar, N.M., Qiblawey, H.M., Mjalli, F.S., and Ettouney, H., Simulation of Large Capacity MSF Brine Circulation Plants, Desalination, 204 (2007) 501–514.

    Article  CAS  Google Scholar 

  25. Fiorini, P., and Sciubba, E., Thermoeconomic analysis of a MSF desalination plant, Desalination, 182 (2005) 39–51

    Article  CAS  Google Scholar 

  26. Cipollina, A., Micale, G., and Rizzuti, L., Investigation of flashing phenomena in MSF chambers, Desalination, 216 (2007) 183–195

    Article  CAS  Google Scholar 

  27. Bogle D., Cipollina A., and Micale G., Dynamic modelling tools for solar powered desalination processes during transient operations, in Solar Desalination for the 21st Century (Eds. L. Rizzuti, H.M. Ettouney, A. Cipollina), Springer. ISBN: 978-1-4020-5506-5 (2007).

    Google Scholar 

  28. Tarifa, E.E., Domínguez, S.F., Humana, D., Martínez, S.L., Nunez, A.F., and Scenna, N.J., Faults analysis for MSF plants, Desalination, 182 (2005) 131–142.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisham Ettouney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ettouney, H. (2009). Conventional Thermal Processes. In: Micale, G., Rizzuti, L., Cipollina, A. (eds) Seawater Desalination. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01150-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01150-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01149-8

  • Online ISBN: 978-3-642-01150-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics