Skip to main content

Formal Tools for the Analysis of Brain-Like Structures and Dynamics

  • Chapter
Creating Brain-Like Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5436))

Abstract

Brains and artificial brainlike structures are paradigms of complex systems, and as such, they require a wide range of mathematical tools for their analysis. One can analyze their static structure as a network abstracted from neuroanatomical results of the arrangement of neurons and the synaptic connections between them. Such structures could underly, for instance, feature binding when neuronal groups coding for specific properties of objects are linked to neurons that represent the spatial location of the object in question. – One can then investigate what types of dynamics such abstracted networks can support, and what dynamical phenomena can readily occur. An example is synchronization. In fact, flexible and rapid synchronization between specific groups of neurons has been suggested as a dynamical mechanism for feature binding in brains [54]. In order to identify non-trivial dynamical patterns with complex structures, one needs corresponding complexity measures, as developed in [51,52,5]. Ultimately, however, any such dynamical features derive their meaning from their role in processing information. Neurons filter and select information, encode it by transforming it into an internal representation, and possibly also decode it, for instance by deriving specific motor commands as a reaction to certain sensory information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L., Nelson, S.: Synaptic plasticity: taming the beast. Nature Neuroscience (suppl. 3), 1178–1183 (2000)

    Article  Google Scholar 

  2. Atay, F., Jost, J.: On the emergence of complex systems on the basis of the coordination of complex behaviors of their elements. Complexity 10, 17–22 (2004)

    Article  Google Scholar 

  3. Atay, F., Jalan, S., Jost, J.: Randomness, chaos, and structure. Complexity (to appear)

    Google Scholar 

  4. Atay, F., Jost, J., Wende, A.: Delays, connection topology, and synchronization of coupled chaotic maps. Phys. Rev. Lett. 92(14), 144101 (2004)

    Article  PubMed  Google Scholar 

  5. Ay, N., Olbrich, E., Bertschinger, N., Jost, J.: A unifying framework for complexity measures of finite systems. In: Proc. ECCS 2006 (2006)

    Google Scholar 

  6. Banerjee, A., Jost, J.: Spectral plots and the representation and interpretation of biological data. Theory Biosci. 126, 15–21 (2007)

    Article  PubMed  Google Scholar 

  7. Banerjee, A., Jost, J.: Graph spectra as a systematic tool in computational biology. Discrete Appl. Math. (in press)

    Google Scholar 

  8. Banerjee, A., Jost, J.: Spectral plot properties: Towards a qualitative classification of networks. Networks Het. Med. 3, 395–411 (2008)

    Article  Google Scholar 

  9. Bauer, F., Atay, F., Jost, J.: Emergence and suppression of synchronized chaotic behavior in coupled map lattices (submitted)

    Google Scholar 

  10. Bertschinger, N., Olbrich, E., Ay, N., Jost, J.: Autonomy: An information theoretic perspective. BioSystems 91, 331–345 (2008)

    Article  PubMed  Google Scholar 

  11. Bertschinger, N., Olbrich, E., Ay, N., Jost, J.: Information and closure in systems theory. In: Artmann, S., Dittrich, P. (eds.) Proc. 7th German Workshop on Artificial Life, pp. 9–21. IOS Press BV, Amsterdam

    Google Scholar 

  12. Bi, G.-Q., Poo, M.-M.: Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci 24, 139–166 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Bi, G.-Q., Poo, M.-M.: Distributed synaptic modification in neural networks induced by patterned stimulation. Nature 401, 792–796 (1999)

    Article  CAS  PubMed  Google Scholar 

  14. Bialek, W., Nemenman, I., Tishby, N.: Predictability, Complexity, and Learning. Neural Computation 13, 2409–2463 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Breidbach, O., Holthausen, K., Jost, J.: Interne Repräsentationen – Über die ”Welt”generierungseigenschaften des Nervengewebes. Prolegomena zu einer Neurosemantik. In: Ziemke, A., Breidbach, O. (eds.) Repräsentationismus – Was sonst?, Vieweg, Braunschweig/Wiesbaden (1996)

    Google Scholar 

  16. Breidbach, O., Jost, J.: On the gestalt concept. Theory Bioscienc 125, 19–36 (2006)

    Article  Google Scholar 

  17. Castiglione, P., Falcioni, M., Lesne, A., Vulpiani, A.: Chaos and coarse graining in statistical mechanics. Cambr. Univ. Press, Cambridge (2008)

    Book  Google Scholar 

  18. Chen, Y.H., Rangarajan, G., Ding, M.Z.: General stability analysis of synchronized dynamics in coupled systems. Phys. Rev. E 67, 26209–26212 (2003)

    Article  Google Scholar 

  19. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, Chichester (1991)

    Book  Google Scholar 

  20. Crutchfield, J.P., Young, K.: Inferring Statistical Complexity. Phys. Rev. Lett. 63, 105–108 (1989)

    Article  CAS  PubMed  Google Scholar 

  21. Crutchfield, J.P., Feldman, D.P.: Regularities unseen, randomness observed: Levels of entropy convergence. Chaos 13(1), 25–54 (2003)

    Article  PubMed  Google Scholar 

  22. Dayan, P., Abbott, L.: Theoretical Neuroscience. MIT Press, Cambridge (2001)

    Google Scholar 

  23. Deneve, S.: Bayesian spiking neurons I: Inference. Neural Comp. 20, 91–117 (2008)

    Article  Google Scholar 

  24. Der, R.: Self-organized acquisition of situated behavior. Theory Biosci. 120, 179–187 (2001)

    Article  Google Scholar 

  25. Der, R.: Homeokinesis and the moderation of complexity in neural systems (to appear)

    Google Scholar 

  26. Eckhorn, R., et al.: Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol. Cybern. 60, 121–130 (1988)

    Article  CAS  PubMed  Google Scholar 

  27. Grassberger, P.: Toward a quantitative theory of self-generated complexity. Int. J. Theor. Phys. 25(9), 907–938 (1986)

    Article  Google Scholar 

  28. Gray, C., König, P., Engel, A., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989)

    Article  CAS  PubMed  Google Scholar 

  29. Hesse, F., Der, R., Herrmann, J.: Reflexes from self-organizing control in autonomous robots. In: 7th Intern. Conf. on Epigenetic Robotics: Modelling cognitive development in robotic systems. Cognitive Studies, vol. 134, pp. 37–44 (2007)

    Google Scholar 

  30. Jalan, S., Amritkar, R.: Self-organized and driven phase synchronization in coupled maps. Phys. Rev. Lett. 90, 014101 (2003)

    Article  Google Scholar 

  31. Jalan, S., Atay, F., Jost, J.: Detecting global properties of coupled dynamics using local symbolic dynamics. Chaos 16, 033124 (2006)

    Article  Google Scholar 

  32. Jost, J.: External and internal complexity of complex adaptive systems. Theory Biosci. 123, 69–88 (2004)

    Article  PubMed  Google Scholar 

  33. Jost, J.: Dynamical systems. Springer, Heidelberg (2005)

    Google Scholar 

  34. Jost, J.: Temporal correlation based learning in neuron models. Theory Bioscienc 125, 37–53 (2006)

    Article  Google Scholar 

  35. Jost, J.: Dynamical networks. In: Feng, J.F., Jost, J., Qian, M.P. (eds.) Networks: From Biology to Theory, pp. 35–62. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  36. Jost, J.: Neural networks: Concepts, mathematical tools, and questions, monograph (in preparation)

    Google Scholar 

  37. Jost, J., Bertschinger, N., Olbrich, E.: Emergence (submitted)

    Google Scholar 

  38. Jost, J., Bertschinger, N., Olbrich, E., Ay, N., Frankel, S.: An information theoretic approach to system differentiation on the basis of statistical dependencies between subsystems. Physica A 10303 (2007)

    Google Scholar 

  39. Jost, J., Joy: Spectral properties and synchronization in coupled map lattices. Phys. Rev. E 65, 16201–16209 (2001)

    Article  Google Scholar 

  40. Kahle, T., Olbrich, E., Ay, N., Jost, J.: Testing Complexity Measures on Symbolic Dynamics of Coupled Tent Maps (submitted)

    Google Scholar 

  41. Kaneko, K.: Period-doubling of kink-antikink patterns, quasi-periodicity in antiferro-like structures and spatial-intermittency in coupled map lattices – toward a prelude to a field theory of chaos. Prog. Theor. Phys. 72, 480–486 (1984)

    Article  Google Scholar 

  42. Kempter, R., Gerstner, W., van Hemmen, J.L., Wagner, H.: Extracting oscillations: Neuronal coincidence detection with noisy periodic spike input. Neural Comput. 10, 1987–2017 (1998)

    Article  CAS  PubMed  Google Scholar 

  43. Kempter, R., Gerstner, W., van Hemmen, J.L.: Hebbian learning and spiking neurons. Phys. Rev. E 59, 4498–4514 (1999)

    Article  CAS  Google Scholar 

  44. Lu, W.L., Atay, F., Jost, J.: Synchronization of discrete-time dynamical networks with time-varying couplings. SIAM J. Math. Anal. 39, 1231–1259 (2007)

    Article  Google Scholar 

  45. Lu, W.L., Atay, F., Jost, J.: Chaos synchronization in networks of coupled maps with time-varying topologies. Eur. Phys. J. B 63, 399–406 (2008)

    Article  CAS  Google Scholar 

  46. Lu, W.L., Atay, F., Jost, J.: Consensus and synchronization in discrete-time networks of multi-agents with Markovian jump topologies and delays (submitted)

    Google Scholar 

  47. Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of synaptic APs and EPSPs. Science 275, 213–215 (1997)

    Article  CAS  PubMed  Google Scholar 

  48. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  49. Rangarajan, G., Ding, M.Z.: Stability of synchronized chaos in coupled dynamical systems. Phys. Lett. A 296, 204–212 (2002)

    Article  CAS  Google Scholar 

  50. Rieke, F., Warland, D., de Ruyter van Steveninck, R., Bialek, W.: Spikes: Exploring the neural code. MIT Press, Cambridge (1997)

    Google Scholar 

  51. Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. USA 91, 5033–5037 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tononi, G., Sporns, O., Edelman, G.M.: A complexity measure of selective matching of signals by the brain. PNAS 93, 3257–3267 (1996)

    Article  Google Scholar 

  53. van Hemmen, J.L.: Theory of synaptic plasticity. In: Moss, F., Gielen, S. (eds.) Handbook of biological physics. Neuro-informatics, neural modelling, vol. 4, pp. 771–823. Elsevier, Amsterdam (2001)

    Google Scholar 

  54. von der Malsburg, C., Schneider, W.: A neural cocktail-party processor. Biol. Cybern. 54, 29–40 (1986)

    Article  PubMed  Google Scholar 

  55. Wu, C.W.: Synchronization in networks of nonlinear dynamical systems coupled via a directed graph. Nonlinearity 18, 1057–1064 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jost, J. (2009). Formal Tools for the Analysis of Brain-Like Structures and Dynamics. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds) Creating Brain-Like Intelligence. Lecture Notes in Computer Science(), vol 5436. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00616-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00616-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00615-9

  • Online ISBN: 978-3-642-00616-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics