Skip to main content

Host Location and Selection by Holoparasitic Plants

  • Chapter
  • First Online:
Plant-Environment Interactions

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Parasitic and carnivorous plants that adopt a heterotrophic lifestyle encounter novel environmental challenges that are shared with other heterotrophs, such as the need to locate hosts or lure prey and the need to overcome the defenses of their intended victims. These challenges are particularly acute for holoparasitic plants that depend entirely on their hosts for nutrients and other resources. In response to these challenges, holoparasitic plants employ a variety of strategies to locate and identify appropriate hosts. Root parasites such as Striga and Orobanche produce large numbers of tiny seeds that germinate only in response to host-derived chemical cues localized to the immediate vicinity of host roots. Other parasites, such as dodders (Cuscuta), produce relatively few large seeds that store sufficient resources for the parasitic seedling to "forage" for nearby hosts. Here we describe recent research on the mechanisms underlying these host-location strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  PubMed  CAS  Google Scholar 

  • Akiyama K, Hayashi H (2008) Plastid-derived strigolactones show the way to roots for symbionts and parasites. New Phytol 178:695–698

    Article  PubMed  CAS  Google Scholar 

  • Awad AA, Sato D, Kusumoto D, Kamioka H, Takeuchi Y, Yoneyama K (2006) Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. J Plant Growth Regul 48:221–227

    CAS  Google Scholar 

  • Babiker AGT, Hamdoun AM, Rudwan A, Mansi NG, Faki HH (1987) Influence of soil-moisture on activity and persistence of the strigol analog Gr-24. Weed Res 27:173–178

    Article  CAS  Google Scholar 

  • Babiker AGT, Ibrahim NE, Edwards WG (1988) Persistence of Gr7 and Striga germination stimulant(s) from Euphorbia aegyptiaca Boiss in soils and in solutions. Weed Res 28:1–6

    Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interations with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Benvenuti S, Dinelli G, Bonetti A (2004) Germination ecology of Leptochloa chinensis: a new weed in the Italian rice agro-environment. Weed Res 44:87–96

    Article  Google Scholar 

  • Bergmann C, Wegmann K, Frischmuth K, Samson E, Kranz A, Weigelt D, Koll P, Welzel P (1993) Stimulation of Orobanche crenata seed germination by (+)-strigol and structural analogs dependence on constitution and configuration of the germination stimulants. J Plant Physiol 142:338–342

    Article  CAS  Google Scholar 

  • Berner DK, Kling JG, Singh BB (1995) Striga research and control: a perspective from Africa. Plant Dis 79:652–660

    Article  Google Scholar 

  • Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Becard G, Sejalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PloS Biol 4:1239–1247

    Article  CAS  Google Scholar 

  • Boone LS, Fate G, Chang M, Lynn DG (1995) Seed germination. In: Graves JD, Press MC (eds) Parasitic plants. Chapman and Hall, London, pp 14–38

    Google Scholar 

  • Bouwmeester HJ, Matusova R, Sun ZK, Beale MH (2003) Secondary metabolite signalling in host–parasitic plant interactions. Curr Opin Plant Biol 6:358–364

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Article  Google Scholar 

  • Bunning E, Kautt R (1956) On chemotropism of the seedlings of C. europaea. Biol Zentralbl 75:356–359

    Google Scholar 

  • Butler LG (1995) Chemical communication between the parasitic weed Striga and its crop host: a new dimension in allelochemistry. In: Inderjit K, Dakshini MM, Einhellig FA (eds) Allelopathy: organisms, processes and application (ACS Symposium Series). ACS, Washington, DC, pp 158–168

    Google Scholar 

  • Chang M, Lynn DG (1986) The haustorium and the chemistry of host recognition in parasitic angiosperms. J Chem Ecol 12:561–579

    Article  CAS  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME (1966) Germination of witchweed (Striga lutea Lour): isolation and properties of a potent stimulant. Science 154:1189–1190

    Article  PubMed  CAS  Google Scholar 

  • Cook CE, Coggon P, McPhail AT, Wall ME, Whichard LP, Egley GH, Luhan PA (1972) Germination stimulants. 2. Structure of strigol: potent seed germination stimulant for witchweed (Striga lutea Lour). J Am Chem Soc 94:6198–6199

    Article  CAS  Google Scholar 

  • Costea M, Tardif FJ (2006) The biology of Canadian weeds. 133. Cuscuta campestris Yuncker, C. gronovii Willd. ex Schult., C. umbrosa Beyr. ex Hook., C. epithymum (L.) L. and C. epilinum Weihe. Can J Plant Sci 86:293–316

    Google Scholar 

  • de Luque AP, Galindo JCG, Macias FA, Jorrin J (2000) Sunflower sesquiterpene lactone models induce Orobanche cumana seed germination. Phytochemistry 53:45–50

    Article  CAS  Google Scholar 

  • Dean HL (1942) Total length of stem developed from a single seedling of Cuscuta. Proc Iowa Acad Sci 49:127–128

    Google Scholar 

  • Dube MP, Olivier A (2001) Striga gesnerioides an its hosts, the cowpea: interaction and methods of control. Can J Bot 79:1225–1240

    Article  Google Scholar 

  • Egley GH (1972) Influence of seed envelope and growth regulators upon seed dormancy in witchweed (Striga lutea Lour). Ann Bot 36:755

    CAS  Google Scholar 

  • Eplee RE (1992) Witchweed (Striga asiatica): an overview of management strategies in the USA. Crop Prot 11:3–7

    Article  Google Scholar 

  • Fate GD, Lynn DG (1996) Xenognosin methylation is critical in defining the chemical potential gradient that regulates the spatial distribution in Striga pathogenesis. J Am Chem Soc 118:11369–11376

    Article  CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  PubMed  CAS  Google Scholar 

  • Fischer NH, Weidenhamer JD, Bradow JM (1989) Dihydroparthenolide and other sesquiterpene lactones stimulate witchweed germination. Phytochemistry 28:2315–2317

    Article  CAS  Google Scholar 

  • Galindo JCG, de Luque AP, Jorrin J, Macias FA (2002) SAR studies of sesquiterpene lactones as Orobanche cumana seed germination stimulants. J Agric Food Chem 50:1911–1917

    Article  PubMed  CAS  Google Scholar 

  • Garrison WJ, Miller GL, Raspet R (2000) Ballistic seed projection in two herbaceous species. Am J Bot 87:1257–1264

    Article  PubMed  CAS  Google Scholar 

  • Goldwasser Y, Yoneyama K, Xie XA (2008) Production of strigolactones by Arabidopsis thaliana responsible for Orobanche aegyptiaca seed germination. Plant Growth Regul 55:21–28

    Article  CAS  Google Scholar 

  • Gonzales WL, Suarez LH, Guinez R, Medel R (2007) Phenotypic plasticity in the holoparasitic mistletoe Tristerix aphyllus (Loranthaceae): consequences of trait variation for successful establishment. Evol Ecol 21:431–444

    Article  Google Scholar 

  • Gressel J, Hanafi A, Head G, Marasas W, Obilana B, Ochanda J, Souissi T, Tzotzos G (2004) Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Protect 23:661–689

    Article  Google Scholar 

  • Haidar MA, Orr GL, Westra P (1997) Effects of light and mechanical stimulation on coiling and prehaustoria formation in Cuscuta spp. Weed Res 37:219–228

    Article  Google Scholar 

  • Hairston NG, Van Brundt RA, Kearns CM (1995) Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 76:1706–1711

    Article  Google Scholar 

  • Hammond WA – translator (1902) Aristotle's psychology: a treatise on the principle of life (De Anima and Parva Naturalia). Swan Sonnenschein, MacMillian, New York

    Google Scholar 

  • Hauck C, Muller S, Schildknecht H (1992) A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant. J Plant Physiol 139:474–478

    Article  CAS  Google Scholar 

  • Heide-Jørgensen HS (2008) Parasitic flowering plants. Brill, Leiden

    Google Scholar 

  • Hess DE, Ejeta G, Butler LG (1992) Selecting sorghum genotypes expressing a quantitative biosynthetic trait that confers resistance to Striga. Phytochemistry 31:493–497

    Article  CAS  Google Scholar 

  • Hinds TE, Hawksworth FG (1965) Seed dispersal velocity in 4 dwarf mistletoes. Science 148:517–519

    Article  PubMed  CAS  Google Scholar 

  • Housley TL, Ejeta G, Cherif-Ari O, Netzly DH, Butler LG (1987) Progress towards an understanding of sorghum resistance to Striga. In: Webe H, Forstreuter W (eds) Proceedings of the 4th International Symposium on Parasitic Flowering Plants. Philipps University, Marburg, Germany, pp 411–419

    Google Scholar 

  • Humphrey AJ, Galster AM, Beale MH (2006) Strigolactones in chemical ecology: waste products or vital allelochemicals? Nat Prod Rep 23:592–614

    Article  PubMed  CAS  Google Scholar 

  • Johnson AW, Rosebery G, Parker C (1976) Novel approach to Striga and Orobanche control using synthetic germination stimulants. Weed Res 16:223–227

    Article  CAS  Google Scholar 

  • Johnson AW, Gowda G, Hassanali A, Knox J, Monaco S, Razavi Z, Rosebery G (1981) The preparation of synthetic analogs of strigol. J Am Chem Soc Perkin Trans 1:1734–1743

    Article  Google Scholar 

  • Karban R (2008) Plant behaviour and communication. Ecol Lett 11:727–739

    Article  PubMed  Google Scholar 

  • Kelly CK (1990) Plant foraging: a marginal value model and coiling response in Cuscuta subinclusa. Ecology 71:1916–1925

    Article  Google Scholar 

  • Kelly CK (1992) Resource choice in Cuscuta europaea. Proc Natl Acad Sci USA 89:12194–12197

    Article  PubMed  CAS  Google Scholar 

  • Kelly CK, Horning K (1999) Acquisition order and resource value in Cuscuta attenuata. Proc Natl Acad Sci USA 96:13219–13222

    Article  PubMed  CAS  Google Scholar 

  • Keyes WJ, Taylor JV, Apkarian RP, Lynn DG (2001) Dancing together. Social controls in parasitic plant development. Plant Physiol 127:1508–1512

    CAS  Google Scholar 

  • Koch AM, Binder C, Sanders IR (2004) Does the generalist parasitic plant, Cuscuta capestris, selectively forage in heterogeneous plant communities? New Phytol 162:147–155

    Article  Google Scholar 

  • Kranz A, SamsonSchulz E, Hennig L, Welzel P, Muller D, MayerFigge H, Sheldrick WS (1996) Synthesis of new strigol analogues. Tetrahedron 52:14827–14840

    Article  CAS  Google Scholar 

  • Kuijt J (1969) The biology of parasitic flowering plants. University of California Press, Berkeley, CA

    Google Scholar 

  • Lass S, Vos M, Wolinska J, Spaak P (2005) Hatching with the enemy: Daphnia diapausing eggs hatch in the presence of fish kairomones. Chemoecology 15:7–12

    Article  Google Scholar 

  • Lopes FL, Desmarais JA, Murphy BD (2004) Embryonic diapause and its regulation. Reproduction 128:669–678

    Article  PubMed  CAS  Google Scholar 

  • Lynn DG, Boone LS (1993) Signaling germination in Striga asiatica. In: Schultz J, Raskin I (eds) Proceedings of the 8th Annual Penn State Symposium in Plant Physiology. Waverly Inc., Baltimore, MD, 47–53

    Google Scholar 

  • Lynn DG, Steffens JC, Kamut VS, Graden DW, Shabanowitz J, Riopel JL (1981) Isolation and characterization of the first host recognition substance for parasitic angiosperms. J Am Chem Soc 103:1868–1870

    Article  CAS  Google Scholar 

  • Lyshede OB (1992) Studies on mature seeds of Cuscuta pedicellata and C. campestris by electron microscopy. Ann Bot 69:365–371

    Google Scholar 

  • Macías FA, Fernandez A, Varela RM, Molinillo JMG, Torres A, Alves P (2006) Sesquiterpene lactones as allelochemicals. J Nat Prod 69:795–800

    Article  PubMed  Google Scholar 

  • Mangnus EM, Zwanenburg B (1992) Tentative molecular mechanism for germination stimulation of Striga and Orobanche seeds by strigol and its synthetic analogues. J Agric Food Chem 40:1066–1070

    Article  CAS  Google Scholar 

  • Mangnus EM, Dommerholt FJ, Dejong RLP, Zwanenburg B (1992a) Improved synthesis of strigol analog Gr24 and evaluation of the biological activity of its diastereomers. J Agric Food Chem 40:1230–1235

    Article  CAS  Google Scholar 

  • Mangnus EM, Vanvliet LA, Vandenput DAL, Zwanenburg B (1992b) Structural modifications of strigol analogs: influence of the B and C rings on the bioactivity of the germination stimulant Gr24. J Agric Food Chem 40:1222–1229

    Article  CAS  Google Scholar 

  • Matsuura H, Ohashi K, Sasako H, Tagawa N, Takano Y, Ioka Y, Nabeta K, Yoshihara T (2008) Germination stimulant from root exudates of Vigna unguiculata. Plant Growth Regul 54:31–36

    Article  CAS  Google Scholar 

  • Matusova R, Bouwmeester HJ (2006) The effect of host-root-derived chemical signals on the germination of parasitic plants. In: Dicke M, Takken W (eds) Chemical ecology: from gene to ecosystem. Springer, Berlin, pp 39–54

    Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    Article  PubMed  CAS  Google Scholar 

  • Menke HF (1954) Dodder infestation can halt certified seed production. West Feed Seed 9:24–37

    Google Scholar 

  • Műller S, Hauck C, Schildknecht H (1992) Germination stimulants produced by Vigna unguiculata Walp Cv Saunders upright. J Plant Growth Regul 11:77–84

    Article  Google Scholar 

  • Musselman LJ (1980) The biology of Striga, Orobanche, and other root parasitic weeds. Annu Rev Phytopathol 18:463–489

    Article  Google Scholar 

  • Musselman LJ, Press MC (1995) Introduction to parasitic plants. In: Press MC, Graves JD (eds) Parasitic plants. Chapman and Hall, London, 1–13

    Google Scholar 

  • Musselman LJ, Yoder JI, Westwood JH (2001) Parasitic plants major problem to food crops. Science 293:1434–1434

    Article  PubMed  CAS  Google Scholar 

  • Norton DA, Carpenter MA (1998) Mistletoes as parasites: host specificity and speciation. Trends Ecol Evol 13:101–105

    Article  PubMed  CAS  Google Scholar 

  • Nickrent DL (2007) Parasitic plant genera and species. Parasitic plant connection: http://www.parasiticplants.siu.edu/

    Google Scholar 

  • Nickrent DL, Musselman LJ, Riopel JL, Eplee RE (1979) Haustorial initiation and non-host penetration in witchweed (Striga asiatica). Ann Bot 43:233–236

    Google Scholar 

  • Olivier A, Leroux GD (1992) Root development and production of a witchweed (Striga Spp) germination stimulant in sorghum (Sorghum bicolor) cultivars. Weed Sci 40:542–545

    Google Scholar 

  • Orr GL, Haidar MA, Orr DA (1996) Smallseed dodder (Cuscuta planiflora) gravitropism in red light and in red plus far-red. Weed Sci 44:795–796

    CAS  Google Scholar 

  • Palmer AG, Gao R, Maresh J, Erbil WK, Lynn DG (2004) Chemical biology of multi-host/pathogen interactions: chemical perception and metabolic complementation. Annu Rev Phytopathol 42:439–464

    Article  PubMed  CAS  Google Scholar 

  • Parker C (1991) Protection of crops against parasitic weeds. Crop Protect 10:6–22

    Article  CAS  Google Scholar 

  • Parker C, Riches CR (1993) Parasitic weeds of the world: biology and control. CAB, Wallingford

    Google Scholar 

  • Pennings SC, Callaway RM (1996) Impact of a parasitic plant on the structure and dynamics of salt marsh vegetation. Ecology 77:1410–1419

    Article  Google Scholar 

  • Pennings SC, Callaway RM (2002) Parasitic plants: parallels and contrasts with herbivores. Oecologia 131:479–489

    Article  Google Scholar 

  • Press MC, Graves JD (1995) Parasitic plants. Chapman and Hall, London, pp 292

    Google Scholar 

  • Press MC, Scholes JD, Riches CR (2001) Current status and future prospects for management of parasitic weeds (Striga and Orobanche). In: Riches CR, Farnham UK (eds) The world's worst weeds. British Crop Protection Council, London, pp 71–90

    Google Scholar 

  • Ramaiah KV, Chidley VL, House LR (1991) A time-course study of early establishment stages of parasitic angiosperm Striga asiatica on susceptible sorghum roots. Ann Appl Biol 118:403–410

    Article  Google Scholar 

  • Rengefors K, Karlsson I, Hansson LA (1998) Algal cyst dormancy: a temporal escape from herbivory. Proc R Soc Lond B 265:1353–1358

    Article  Google Scholar 

  • Runyon JB, Mescher MC, De Moraes CM (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967

    Article  PubMed  CAS  Google Scholar 

  • Runyon JB, Tooker JF, Mescher MC, De Moraes CM (2008b) Parasitic plants in agriculture: chemical ecology of germination and host-plant location as targets for sustainable control. Sustainable Agriculture Reviews - Volume 1 - Springer

    Google Scholar 

  • Salle G, Tuquet C, Raynal-Roques A (1998) Biology of flowering parasitic plants. Compt Rend Seanc Soc Biol Filial 192:9–36

    Google Scholar 

  • Sandell M (1990) The evolution of seasonal delayed implantation. Q Rev Biol 65:23–42

    Article  PubMed  CAS  Google Scholar 

  • Sato D, Awad AA, Takeuchi Y, Yoneyama K (2005) Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton. Biosci Biotechnol Biochem 69:98–102

    Article  PubMed  CAS  Google Scholar 

  • Siame BA, Weerasuriya Y, Wood K, Ejeta G, Butler LG (1993) Isolation of strigol, a germination stimulant for Striga asiatica, from host plants. J Agric Food Chem 41:1486–1491

    Article  CAS  Google Scholar 

  • Silvertown J (1998) Plant phenotypic plasticity and non-cognitive behaviour. Trends Ecol Evol 13:255–256

    Article  PubMed  CAS  Google Scholar 

  • Silvertown J, Gordon DM (1989) A framework for plant behavior. Annu Rev Ecol Syst 20:349–366

    Article  Google Scholar 

  • Smith H (1994) Sensing the light environment the functions of the phytochrome family. In: Kendrick R, Kronenberg G (eds) Photomorphogenesis in plants, 2nd edn. Kluwer, Dordrecht,377–416

    Chapter  Google Scholar 

  • Stewart GR, Press MC (1990) The physiology and biochemistry of parasitic angiosperms. Annu Rev Plant Physiol Plant Mol Biol 41:127–151

    Article  CAS  Google Scholar 

  • Tuquet C, Farineau N, Salle G (1990) Biochemical composition and photosynthetic activity of chloroplasts from Striga hermonthica and Striga aspera, root parasites of field-grown cereals. Physiol Plant 78:574–582

    Article  CAS  Google Scholar 

  • Vaucher JP (1823) Mémoire sur la germination des orobanches. Mém MUS Hist Nat Paris 10:261–273

    Google Scholar 

  • Worsham AD (1987) Germination of witchweed seeds. In: Musselman LJ (ed) Parasitic weeds in agriculture. CRC, Boca Raton, FL, pp 45–61

    Google Scholar 

  • Wigchert SCM, Zwanenburg B (1999) A critical account on the inception of Striga seed germination. J Agric Food Chem 47:1320–1325

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y (2007) 2'-Epi-orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem 55:8067–8072

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Yoneyama K, Kusumoto D, Yamada Y, Yokota T, Takeuchi Y (2008a) Isolation and identification of alectrol as (+)-orobanchyl acetate, a germination stimulant for root parasitic plants. Phytochemistry 69:427–431

    Article  CAS  Google Scholar 

  • Xie XN, Yoneyama K, Kusumoto D, Yamada Y, Takeuchi Y, Sugimoto Y (2008b) Sorgomol, germination stimulant for root parasitic plants, produced by Sorghum bicolor. Tetrahedron Lett 49:2066–2068

    Article  CAS  Google Scholar 

  • Yasuda N, Sugimoto Y, Kato M, Inanaga S, Yoneyama K (2003) (+)-Strigol, a witchweed seed germination stimulant, from Menispermum dauricum root culture. Phytochemistry 62:1115–1119

    Article  PubMed  CAS  Google Scholar 

  • Yoder JI (2001) Host-plant recognition by parasitic Scrophulariaceae. Curr Opin Plant Biol 4:359–365

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark C. Mescher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mescher, M.C., Smith, J., De Moraes, C.M. (2009). Host Location and Selection by Holoparasitic Plants. In: Balu¿ka, F. (eds) Plant-Environment Interactions. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89230-4_6

Download citation

Publish with us

Policies and ethics