Skip to main content
Log in

The haustorium and the chemistry of host recognition in parasitic angiosperms

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Two parasitic angiosperms,Agalinis purpurea (Scrophulariaceae) andStriga asiatica (Scrophulariaceae), are compared as to the chemical recognition events involved in host selection.Agalinis is a hemiparasite which can mature to seed-set without a host, whereasStriga is a holoparasite and survives for only a very limited time without a host. Both parasites, however, attach to a host through a specialized organ known as the haustorium and regulate the development of this organ through the recognition of chemical factors from host plants. We now describe the discovery of 2,6-dimethoxy-p-benzoquinone (2,6-DMBQ) as an haustoria-inducing principle fromSorghum root extracts. Our investigation of this compound has led us to suggest that one level of host recognition in these parasitic plants is mediated through their enzymatic digestion of the host root surface. Degradation of surface components liberates quinonoid compounds, such as 2,6-DMBQ, which in turn trigger haustorial development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, A.A. 1981. Biochemical mechanisms of disease resistance.Annu. Rev. Plant Physiol. 32:21–81.

    Google Scholar 

  • Bolker, H.I., andKung, F.L. 1969. Formation of 2-6-dimethoxy-1,4-benzoquinone by the action Of nitrous acid on 1,2,3-trimethoxybenzene.J. Chem. Soc. (C), 1969:2298–2304.

    Google Scholar 

  • Bowie, J.H., Cameron, D.W., Giles, R.G.F., andWilliams, D.H. 1966. Studies in mass spectrometry. Part V. Mass spectra of benzoquinones.J. Chem. Soc. (B), 1966:335–339.

    Google Scholar 

  • Bungenberg De Jonc, H.L.,Klaar, W.J., andVliegenthart, J.A. 1955. Glycosides and their importance in the wheat germ. 3rd Internationaler Brotkongress, Hamburg, pp. 29–33.

  • Burgstahler, A.W., andWorden, L.R. 1973. Coumarone, p. 351,in H.E. Baumgarten, (ed.). Organic Syntheses, Collective Volume V. Wiley, New York.

    Google Scholar 

  • Caldwell, E.S., andSteelink, C. 1969. Phenoxy radical intermediates in the enzymatic degradation of lignin model compounds.Biochim. Biophys. Acta 184:420–431.

    Google Scholar 

  • Carlson, R.E., andDolphin, D.H. 1981. Chromatographic analysis of isoflavanoid accumulation in stressedPisum sativum.Phytochemistry 20:2281–2284.

    Google Scholar 

  • Carlson, R.E., andDolphin, D.H. 1982.Pisum sativum stress metabolites: Two cinnamylphenols and a 2′-methoxychalcone.Phytochemistry 21:1733–1736.

    Google Scholar 

  • Chappel, J.B., andHansford, R.G. 1972. Pages 43–56,in G.D. Birnie, and S.M. Fox (eds.). Subcellular Components, Preparation and Fractionation, 2nd ed. Butterworths, London.

    Google Scholar 

  • Cook, C.E., Whichard, L.P., Wall, M.E., Egley, G.H., Coggan, P., Luhan, P.A., andMcPhail, A.T. 1972. Germination stimulants. 2. The structures of strigol—a potent seed germination stimulant for witchweed (Striga latea Lour.)J. Am. Chem. Chem. Soc. 94:6198–6199.

    Google Scholar 

  • Crombie, L., Crombie, W.M.L., andWhiting, D.A. 1984. Isolation of avenacins A-1, A-2, B-1, and B-2 from oat roots: Structures of their aglycones, the avenestergins.J. Chem. Soc. Chem. Commun. 1984:244–248.

    Google Scholar 

  • Dewick, P.M. 1975. Pterocarpan biosynthesis: 2′-Hydroxy-isoflavone and isoflavone precursors of dimethylhomopterocarpin in red clover.J. Chem. Soc. Chem. Commun. 1975:656–658.

    Google Scholar 

  • Handa, S.S., Kinghorn, A.D., Cordeu, G.A., andFarnsworth, N.R. 1983. Plant anticancer agents. XXVI. Constituents ofPeddiea fischeri.J. Nat. Prod. 46:248–250.

    Google Scholar 

  • Harborne, J.B. 1977. Phenolic compounds derived from shikimate, pp. 34–55,in J.D. Bu'Lock (ed.). Biosynthesis, vol. 5. The Chemical Society, London.

    Google Scholar 

  • Harkin, J.M., andObst, J.R. 1973. Syringaldazine, an effective reagent for detecting laccase and peroxidase in fungi.Experientia 29:381–387.

    Google Scholar 

  • Haslam, E. 1974. The Shikimate Pathway. Wiley, New York.

    Google Scholar 

  • Hausen, B.M., Simatupang, M.H., andKingreen, J.C. 1972. Untersuchungen zur Uberempfindlichkeit gegen Sucupira und Palisanderholz.Berufsdermat 20:1–7.

    Google Scholar 

  • Ishihara, T., andIshihara, M. 1976. Oxidation of syringic acid by fungal laccase.Mokuzai Gakkaishi 22:371–375.

    Google Scholar 

  • Jones, E., Ekundayo, O., andKingston, D.G.I. 1981. Plant anticancer agents. XI. 2,6-dimethoxybenzoquinone as a cytoxic constituent ofTibouchina pulchra.J. Nat. Prod. 44:493–495.

    Google Scholar 

  • Kamat, V.S., Graden, D.W., Lynn, D.G., Steffens, J.C., andRiopel, J.L. 1982. A versatile total synthesis of xenognosin.Tetrahedron Lett. 23:1035–1038.

    Google Scholar 

  • Kodaira, H., Ishikawa, M., Komoda, Y., andNakajima, T. 1983. Isolation and identification of anti-platelet aggregation principles from the bark ofFraxinus japonica Blume.Chem. Pharm. Bull. 31:2262–2268.

    Google Scholar 

  • Kuijt, J. 1969. The Biology of Parasitic Flowering Plants. University of California Press, Berkeley.

    Google Scholar 

  • Langenheim, J.H. 1981. Terpenoids in the Leguminosae, pp. 627–655,in R.M. Polhill and P.H. Raven (eds.). Advances in Legume Systematics. Royal Botanical Gardens, England.

    Google Scholar 

  • Lynn, D.G. 1985. The involvement of allelochemicals in the host selection of parasitic angiosperms, pp. 55–81,in A.C. Thompson (ed.). ACS Symposium Series No. 268, The Chemistry of Allelopathy: Biochemical Interactions Among Plants, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Lynn, D.G., Steffens, J.C., Kamat, V.S., Graden, D.W., Shabanowitz, J., andRiopel, J.L. 1981. Isolation and characterization of the first host recognition substance for parasitic angiosperms.J. Am. Chem. Soc. 103:1868–1870.

    Google Scholar 

  • MacQueen, M. 1984. Haustorial initiating activity of several simple phenolic compounds, pp. 118–122,in Proc. Third International Symposium on Parasitic Weeds. Aleppo, Syria, ICARDA.

    Google Scholar 

  • Matsumoto, M., andKobayashi, H. 1985. Hexacyanoferrate-catalyzed oxidation of trimethoxybenzenes to dimethoxy-P-benzoquinones with hydrogen peroxide.J. Org. Chem. 50:1766–1768.

    Google Scholar 

  • Morton, R.A. (ed.). 1965. Biochemistry of Quinones. Academic Press, New York.

    Google Scholar 

  • Murashige, T., andSkÖog, F. 1962. A revised medium for rapid growth with tobacco culture.Physiol. Plant. 15:473–497.

    Google Scholar 

  • Nickrent, D.C., Musselman, L.J., Riopel, J.L., andEplee, R.E. 1979. Haustorial initiation and non-host penetration in witchweed (Striga asiatica).Ann. Bot. 43:233–236.

    Google Scholar 

  • Patai, S. (ed.). 1974. The Chemistry of the Quinonoid Compounds, Part 1. Wiley, London.

    Google Scholar 

  • Redfearn, E.R., andWhittaker, P.A. 1962. The inhibitory effects of quinones on the succinic oxidase system of the respiratory chain.Biochim. Biophys. Acta 56:440–444.

    Google Scholar 

  • Riopel, J.L. 1979. Experimental studies on induction of haustoria inAgalinis purpurea, pp. 165–173,in Proc. Second International Symposium on Parasitic Weeds. North Carolina State University, Raleigh, North Carolina.

    Google Scholar 

  • Riopel, J.L., andBaird, V. 1986. Morphogenesis of the early development of primary haustoria inStriga asiatica, in L. Musselman (ed.). The Biology and Control ofStriga. CRC Press, Boca Raton, Florida. In press.

    Google Scholar 

  • Riopel, J.L., andMusselman, L.J. 1979. Experimental initiation of haustoria inAgalinis purpurea (Scrophulariaceae).Am. J. Bot. 66:570–575.

    Google Scholar 

  • Schultz, K.H., Garbe, I., Hausen, B.M. andSimptupang, M.H. 1979. The sensitizing capacity of naturally occurring quinones. Experimental studies in Guinea pigs.Arch. Dermatol. Res. 264:275–286.

    Google Scholar 

  • Steffens, J.C., Lynn, D.G., Kamat, V.S., andRiopel, J.L. 1982. Molecular specificity of haustorial inductionin Agalinis purpurea (L). (Scrophulariaceae).Ann. Bot. 50:1–7.

    Google Scholar 

  • Steffens, J.C., Roark, J.L., Lynn, D.G., andRiopel, J.L. 1983. Host recognition in parasitic angiosperms: Use of correlation spectroscopy to identify long-range coupling in a haustorial inducer.J. Am. Chem. Soc. 105:1669–1671.

    Google Scholar 

  • Steffens, J.C.,Lynn, D.G., andRiopel, J.L. 1986. A novel haustorial inducer for the root parasiteAgalinis purpurea Phytochemistry, (in press).

  • Thomson, R.H. 1971. Naturally Occurring Quinones, 2nd ed. Academic Press, London, page 734.

    Google Scholar 

  • Umezawa, T., Nakatsubo, F., andHiguchi, T. 1982. Lignin degradation byPhanerochaete chrysosporium: Metabolism of a phenolic phenylcoumaran substrate model compound.Arch. Microbiol. 131:124–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, M., Lynn, D.G. The haustorium and the chemistry of host recognition in parasitic angiosperms. J Chem Ecol 12, 561–579 (1986). https://doi.org/10.1007/BF01020572

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020572

Key words

Navigation