Skip to main content

Memorization of Abiotic Stimuli in Plants: A Complex Role for Calcium

  • Chapter
  • First Online:
Plant-Environment Interactions

Abstract

Plants are sensitive to various abiotic stimuli (including electromagnetic radiations), to which they respond by modifying their development. The response is sometimes delayed, relative to the reception of the stimulus, which implies that the corresponding information is memorized. A few cases of such behavior are described, including that controlling the induction of meristems in the hypocotyl of flax seedlings. Using this model system, calcium has been shown to play a key role not only in stimulus sensing and the possible storage of that information, but also in its final expression. Modifications of genome expression, as well as posttranslational modifications (e.g., phosphorylation) of proteins, are involved in signal transduction and the possible memorization of information. SIMS methodology provides us with interesting experimental possibilities. The process of “ion condensation,” which has been practically ignored by biologists so far, may be involved in the memorization mechanism. A few cases of the application of plant sensitivity and information memorization to agronomical or research problems are described. The role of memorization mechanisms in the elaboration of an integrated response from plants to the many, varied stimuli that they receive permanently from their environment is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ppb:

Parts per billion

ppm:

Parts per million

SIMS:

Secondary ion mass spectrometry

References

  • Beyl CA, Mitchell CA (1977) Automated mechanical stress. Application for height control of greenhouse chrysanthemum. HortSci 12:575–577

    Google Scholar 

  • Bögre L, Ligterink W, Heberle-Bors E, Hirt H (1996) Mechanosensors in plants. Nature 383:489–490

    Article  PubMed  Google Scholar 

  • Bourgeade P, Boyer N, De Jaegher G, Gaspar T (1989) Carry-over of thigmomorphogenesic characteristics in calli derived from Bryonia dioica internodes. Plant Cell Tissue Organ Cult. 19:199–211

    Article  Google Scholar 

  • Bowler C, Chua NH (1994) Emerging themes of plant signal transduction. Plant Cell 6:1529–1541

    PubMed  CAS  Google Scholar 

  • Bowles DJ (1995) Signal transduction in plants. Trends Cell Biol 5:404–408

    Article  PubMed  CAS  Google Scholar 

  • Boyer N, Gaspar T, Lamand M (1979) Modification des isoperoxydases et de l'allongement des entre-noeuds de bryone à la suite d'irritations mécaniques. Z Pflanzenphysiol 93:459–470

    CAS  Google Scholar 

  • Braam J, Davis RW (1990) Rain-, wind- and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364

    Article  PubMed  CAS  Google Scholar 

  • Braam J, Sistrunk ML, Polisensky DH, Xu W, Purugganan MM, Antosiewicz DM, Campbell P, Johnson K (1996) Life in a changing world: TCH gene regulation of expression and responses to environmental signals. Physiol Plant 98:909–916

    Article  PubMed  CAS  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signalling. Annu Rev Plant Physiol Plant Mol Biol 46:95–122

    Article  CAS  Google Scholar 

  • Castaing R, Slodzian G (1962) Microanalyse par émission secondaire. J Microsc 1:395–414

    CAS  Google Scholar 

  • Cessna SG, Chandra S, Low PS (1998) Hypo-osmotic shock of tobacco cells stimulates Ca2+ fluxes deriving first from external and then internal Ca2+ stores. J Biol Chem 42:27286–27291

    Article  Google Scholar 

  • Chaerle L, Van Der Straeten D (2000) Imaging techniques and the early detection of plant stress. Trends Plant Sci 5:495–501

    Article  PubMed  CAS  Google Scholar 

  • Davies E (1987) Plant responses to wounding. In: Davies DD (ed) The biochemistry of plants, vol. 12. Academic, London, pp 243–264

    Google Scholar 

  • Davies E (1993) Intercellular and intracellular signals and their transduction via the plasma membrane–cytoskeleton interface. Cell Biol 4:139–147

    CAS  Google Scholar 

  • Davies E, Schuster A (1981) Intercellular communication in plants: evidence for a rapidly generated, bidirectionally transmitted wound signal. Proc Natl Acad Sci USA 78:2422–2426

    Article  PubMed  CAS  Google Scholar 

  • Davies E, Fillingham BD, Abe S (1996) The plant cytoskeleton. In: Hesketh JE, Pryme IM (eds) The cytoskeleton: role in specialised tissues, vol 3. JAI, New York, pp 405–449

    Google Scholar 

  • Davies E, Stankovic B, Azama K, Shibata K, Abe S (2001) Novel components of the plant cytoskeleton: a beginning to plant “cytomics.” Plant Sci 160:185–196

    Article  PubMed  CAS  Google Scholar 

  • De Jaegher G, Boyer N, Gaspar T (1985) Thigmomorphogenesis in Bryonia dioica, changes in soluble and wall peroxidases, phenylalanine ammonia lyase activity, cellulose, lignin content and monomeric constituents. Plant Growth Regul 3:133–148

    Article  CAS  Google Scholar 

  • Demongeot J, Kaufman M, Thomas R (2000a) Positive feedback circuits, regulation circuits and memory. C R Acad Sci Paris (Sciences de la Vie/Life Sciences) 323:69–79

    CAS  Google Scholar 

  • Demongeot J, Thomas R, Thellier M (2000b) A mathematical model for storage and recall functions in plants. C R Acad Sci Paris (Sciences de la Vie/Life Sciences) 323:93–97

    CAS  Google Scholar 

  • Demongeot J, Thellier M, Thomas R (2006) Storage and recall of environmental signals in a plant: modelling by use of a differential (continuous) formulation. C R Biol 329:971–978

    Article  PubMed  Google Scholar 

  • Dérue C, Gibouin D, Demarty M, Verdus MC, Lefebvre F, Thellier M, Ripoll C (2006) Dynamic-SIMS imaging and quantification of inorganic ions in frozen-hydrated plant samples. Microsc Res Tech 69:53–63

    Article  PubMed  Google Scholar 

  • Desbiez MO, Thellier M (1975) Lithium inhibition of the mechanically induced precedence between cotyledonary buds. Plant Sci Let 4:315–321

    Article  CAS  Google Scholar 

  • Desbiez MO, Champagnat P, Thellier M (1978) Décapitation, traumatismes et variations nycthémérales des corrélations entre cotylédons et bourgeons axillaires chez le Bidens pilosus L. C R Acad Sci Paris (série D) 286:1289–1292

    Google Scholar 

  • Desbiez MO, Champagnat P, Boyer N, Frachisse JM, Gaspar T, Thellier M (1983) Inhibition corrélative de la croissance de l'hypocotyle de Bidens pilosus L. par des traumatismes cotylédonaires légers. Bull Soc Bot Fr [Actual Bot] 130:67–77

    Google Scholar 

  • Desbiez MO, Kergosien Y, Champagnat P, Thellier M (1984) Memorization and delayed expression of regulatory messages in plants. Planta 160:392–399

    Article  Google Scholar 

  • Desbiez MO, Champagnat P, Thellier M (1986) Mécanisme de “mise en mémoire” et de “rappel de mémoire” de messages morphogènes chez Bidens pilosus L. C R Acad Sci Paris (série III) 302:573–578

    Google Scholar 

  • Desbiez MO, Gaspar T, Crouzillat D, Frachisse JM, Thellier M (1987a) Effect of cotyledonary prickings on growth, ethylene metabolism and peroxidase activity in Bidens pilosus. Plant Physiol Biochem 25:137–143

    CAS  Google Scholar 

  • Desbiez MO, Thellier M, Champagnat P (1987b) Storage and retrieval of morphogenetic messages in plantlets of Bidens pilosus L. In: Wagner E (ed) The cell surface in signal transduction, NATO ASI series, vol. H12. Springer, Berlin, pp 189–203

    Google Scholar 

  • Desbiez MO, Boyer N, de Jaegher G, Frachisse JM, Ripoll C, Demarty M, Thellier M (1991a) Fast signalling involved in the morphogenetic responses of plants to mechanical stimuli, Rev Cytol Biol Veg 14:185–200

    Google Scholar 

  • Desbiez MO, Ripoll C, Pariot C, Thellier M (1991b) Elicitation of developmental processes in higher plants by hexoses or myo-inositol, in the presence of K+ or Ca2+. Plant Physiol Biochem 29:457–462

    CAS  Google Scholar 

  • Desbiez MO, Tort M, Thellier M (1991c) Control of a symmetry-breaking process in the course of the morphogenesis of plantlets of Bidens pilosa L. Planta 184:397–402

    Article  Google Scholar 

  • Desbiez MO, Boyer N, Thellier M (1992) Les messages de croissance chez les plantes. La Recherche 240:188–196

    Google Scholar 

  • Desbiez MO, Mikulecky D, Thellier M (1994) Growth messages in plants: principle of a possible modeling and further experimental characteristics. J Biol Syst 2:127–136

    Article  Google Scholar 

  • Desbiez MO, Tort M, Monnier C, Thellier M (1998) Asymmetrical triggering of the cell cycle in opposite buds of a young plant, after a slight cotyledonary wound. C R Acad Sci Paris (Sciences de la Vie/Life Sciences) 321:403–407

    Google Scholar 

  • Elwood JM (2003) Epidemiological studies of radio-frequency exposures and human cancer. Bioelectromagnetics 24(Suppl 6):S63–S73

    Article  Google Scholar 

  • Falkner R, Falkner G (2003) Distinct adaptability during phosphate uptake by the Cyanobacterium Anabaena variabilis reflects information processing about preceding phosphate supply. J Trace Microprobe Tech 21:363–375

    Article  CAS  Google Scholar 

  • Folley-Gueye ML, Verdus MC, Demarty M, Thellier M, Ripoll C (1998) Cambium pre-activation in beech correlates with a strong temporary increase of calcium in cambium and phloem but not in xylem cells. Cell Calcium 24:205–211

    Article  Google Scholar 

  • Gautheret RJ (1935) Recherches sur la culture des tissus végétaux. Rev Cytol Cytophysiol Veg 1:1–279

    Google Scholar 

  • Guerquin-Kern JL, Wu TD, Quintana C, Croisy A (2005) Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim Biophys Acta 1724:228–238

    Article  PubMed  CAS  Google Scholar 

  • Hammer PA, Mitchell CA, Weiler TC (1974) Height control in greenhouse chrysanthemum by mechanical stress. HortScience 9:474–475

    Google Scholar 

  • Henry Vian C, Vian A, Dietrich A, Ledoigt G, Desbiez MO (1995a) Change in the polysomal mRNA population upon wound signal expression or storage in Bidens pilosa. Plant Plysiol 33:337–344

    CAS  Google Scholar 

  • Henry Vian C, Vian A, Davies E, Ledoigt G, Desbiez MO (1995b) Wounding regulates polysomal incorporation of hsp70 and tch1 transcripts during signal storage and retrieval. Physiol Plant 95:387–392

    Article  CAS  Google Scholar 

  • Hillion F, Daigne B, Girard F, Slodzian G (1997) The Cameca nanoSIMS50: experimental results. In: Benninghoven A, Hagenhoff B, Werner HW (eds) Secondary ion mass spectrometry SIMS X. Wiley, Chichester, pp 979–982

    Google Scholar 

  • Jaffé MJ, Forbes S (1993) Thigmomorphogenesis: the effect of mechanical perturbations on plants. Plant Growth Regul 12:313–324

    Article  PubMed  Google Scholar 

  • Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93:11274–11279

    Article  PubMed  CAS  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748

    Article  PubMed  CAS  Google Scholar 

  • Kergosien Y, Thellier M, Desbiez MO (1979) Préséances entre bourgeons axillaires chez Bidens pilosus L.: modélisation au niveau macroscopique en termes de catastrophes, ou au niveau microscopique en termes depompes et fuites cellulaires. In: Delattre P, Thellier M (eds) Elaboration et justification des modèles: applications en biologie, part I. Maloine, Paris, pp 323–343

    Google Scholar 

  • Klüsener B, Boheim G, Liss H, Engelberth J, Weiler EW (1995) Gadolinium-sensitive, voltage-dependent calcium release channels in the endoplasmic reticulum of a higher plant mechanoreceptor organ. EMBO J 14:2708–2714

    PubMed  Google Scholar 

  • Knight H (2000) Calcium signalling during abiotic stress in plants. Int Rev Cytol 195:269–324

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Knight MR (1995) Recombinant aequorin methods for intracellular calcium measurement in plants. Methods Cell Biol 49:201–216

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk, Trends Plant Sci 6:262–267

    Article  PubMed  CAS  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effect of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    Article  PubMed  CAS  Google Scholar 

  • Knight MR, Smith SM, Trewavas AJ (1992) Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci USA 89:4967–4971

    Article  PubMed  CAS  Google Scholar 

  • Knight MR, Knight H, Watkins J (1995) Calcium and the generation of plant form. Phil Trans R Soc Lond B 350:83–86

    Article  CAS  Google Scholar 

  • Knight H, Brandt S, Knight MR (1998) A history of stress alters drought calcium signalling pathways in Arabidopsis. Plant J 16:681–687

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR (2004) Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT protomer element. Plant Physiol 135:1710–1717

    Article  PubMed  CAS  Google Scholar 

  • Malone M, Alarcon JJ (1995) Only xylem-born factors can account for systemic wound signalling in the tomato plant. Planta 196:740–746

    Article  CAS  Google Scholar 

  • Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J Chem Phys 51:924–933

    CAS  Google Scholar 

  • McAinsh MR, Hetherington AM (1998) Encoding specificity in Ca2+ signalling systems. Trends Plant Sci 3:32–36

    Article  Google Scholar 

  • Ng CKY, McAinsh MR (2003) Encoding specificity in plant calcium signalling: hot-spotting the ups and downs and waves. Ann Bot 92:477–485

    Article  PubMed  CAS  Google Scholar 

  • Oosawa F (1971) Polyelectrolytes. Marcel Dekker, New York

    Google Scholar 

  • Plaetzer K, Thomas SR, Falkner R, Falkner G (2005) The microbial experience of environmental phosphate fluctuations: an essay on the possibility of putting intentions into cell biochemistry. J Theoret Biol 235:540–554

    Article  CAS  Google Scholar 

  • Plieth C (2001) Plant calcium signaling and monitoring: pro and cons and recent experimental approaches. Protoplasma 218:1–23

    Article  PubMed  CAS  Google Scholar 

  • Plieth C (2005) Calcium: just another regulator in the machinery of life. Ann Bot 96:1–8

    Article  PubMed  CAS  Google Scholar 

  • Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the Earth's gravitational field induces cytosolic calcium transients. Plant Physiol 129:786–796

    Article  PubMed  CAS  Google Scholar 

  • Plieth C, Hansen UP, Knight H, Knight MR (1999) Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 18:491–497

    Article  PubMed  CAS  Google Scholar 

  • Polisensky DH, Braam J (1996) Cold-shock regulation of the Arabidopsis TCH genes and the effect of modulating intracellular calcium levels. Plant Physiol 111:1271–1279

    Article  PubMed  CAS  Google Scholar 

  • Ripoll C, Pariot C, Jauneau A, Verdus MC, Catesson AM, Morvan C, Demarty M, Thellier M (1993) Involvement of sodium in a process of cell differentiation in plants. C R Acad Sci Paris (Sciences de la Vie/Life Sciences) 316:1433–1437

    CAS  Google Scholar 

  • Ripoll C, Norris V, Thellier M (2004) Ion condensation and signal transduction. BioEssays 26:549–557

    Article  PubMed  CAS  Google Scholar 

  • Roux D, Vian A, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G (2006) Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. Physiol Plant 128:283–288

    Article  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signalling. Plant Cell 14:S401-S417

    Google Scholar 

  • Slodzian G, Daigne B, Girard F, Boust F, Hillion F (1990) Cartographie parallèle de plusieurs éléments ou isotopes par balayage avec une sonde ionique submicronique: premiers résultats. C R Acad Sci Paris (série II) 311:57–64

    CAS  Google Scholar 

  • Smith H (1990) Signal perception, differential expression within multigene families and the molecular basis of phenotypic plasticity. Plant Cell Environ 13:585–594

    Article  CAS  Google Scholar 

  • Tafforeau M (2002) Etude des phases précoces de la transduction des signaux environnementaux chez le lin : une approche protéomique. Doctorate Thesis of the University of Rouen, France, pp. 1-207

    Google Scholar 

  • Tafforeau M, Verdus MC, Charlionet R, Cabin-Flaman A, Ripoll C (2002a) Two-dimensional electrophoresis investigation of short term response of flax seedlings to cold shock. Electrophoresis 23:2534–2540

    Article  CAS  Google Scholar 

  • Tafforeau M, Verdus MC, Norris V, White G, Demarty M, Thellier M, Ripoll C (2002b) SIMS study of the calcium-deprivation step related to epidermal meristem production induced in flax by cold shock or radiation from a GSM telephone. J Trace Microprobe Tech 20:611–623

    Article  CAS  Google Scholar 

  • Tafforeau M, Verdus MC, Norris V, White GJ, Cole M, Demarty M, Thellier M, Ripoll C (2004) Plant sensitivity to low intensity 105 GHz electromagnetic radiation. Bioelectromagnetics 25:403–407

    Article  PubMed  Google Scholar 

  • Tafforeau M, Verdus MC, Norris V, Ripoll C, Thellier M (2006) Memory processes in the response of plants to environmental signals. Plant Signal Behav 1:9–14

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Isobe M, Knight MR, Trewavas AJ, Muto S (1997) Hypoosmotic shock induces increases in cytosolic Ca2+ in tobacco suspension-culture cells. Plant Physiol 113:587–594

    PubMed  CAS  Google Scholar 

  • Thellier M, Desbiez MO, Kergosien Y, Champagnat P (1981) Mise en mémoire de signaux morphogènes chez Bidens pilosus L. C R Acad Sci Paris (série III) 292:1187–1190

    Google Scholar 

  • Thellier M, Desbiez MO, Champagnat P, Kergosien Y (1982) Do memory processes also occur in plants? Physiol Plant 56:281–284

    Article  Google Scholar 

  • Thellier M, Ripoll C, Quintana C, Sommer F, Chevallier P, Dainty J (1993) Physical methods to locate metal atoms in biological systems. Methods Enzymol 227:535–586

    Article  PubMed  CAS  Google Scholar 

  • Thellier M, Le Sceller L, Norris V, Verdus MC, Ripoll C (2000) Long-distance transport, storage and recall of morphogenetic information in plants: the existence of a primitive plant “memory”. C R Acad Sci Paris (Sciences de la Vie/Life Sciences) 323:81–91

    CAS  Google Scholar 

  • Thellier M, Dérue C, Tafforeau M, Le Sceller L, Verdus MC, Massiot P, Ripoll C (2001) Physical methods for in vitro analytical imaging in the microscopic range in biology, using radioactive or stable isotopes. J Trace Microprobe Tech 19:143–162

    Article  CAS  Google Scholar 

  • Thellier M, Demongeot J, Norris V, Guespin J, Ripoll C, Thomas R (2004) A logical (discrete) formulation for the storage and recall of environmental signals in plants. Plant Biol 6:590–597

    Article  PubMed  CAS  Google Scholar 

  • Verdus MC, Cabin-Flaman A, Ripoll C, Thellier M (1996) Calcium dependent storage/retrieval of environmental signals in plant development. C R Acad Sci Paris (Sciences de la Vie/Life Sciences) 319:779–782

    CAS  Google Scholar 

  • Verdus MC, Thellier M, Ripoll C (1997) Storage of environmental signals in flax: their morphogenetic effect as enabled by a transient depletion of calcium. Plant J 12:1399–1410

    Article  CAS  Google Scholar 

  • Verdus MC, Le Sceller L, Norris V, Thellier M, Ripoll C (2007) Pharmacological evidence for calcium involvement in the long-term processing of abiotic stimuli in plants. Plant Signal Behav 2:212–220

    Article  PubMed  Google Scholar 

  • Vian A, Henry-Vian C, Schantz R, Ledoigt G, Frachisse JM, Desbiez MO, Julien JL (1996) Is membrane potential involved in calmodulin gene expression after external stimulation in plants? FEBS Lett 380:93–96

    Article  PubMed  CAS  Google Scholar 

  • Vian A, Roux D, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G (2006) Microwave irradiation affects gene expression in plants. Plant Signal Behav 1:67–70

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Carrell H, Adesina T, Markin VS, Jovanov VS (2008) Plant electrical memory. Plant Signal Behav 3:490-492

    Article  Google Scholar 

  • Wheeler RM, Salisbury FB (1979) Water spray as a convenient means of imparting mechanical stimulation to plants. HortScience 14:270–271

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Thellier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ripoll, C., Sceller, L., Verdus, MC., Norris, V., Tafforeau, M., Thellier, M. (2009). Memorization of Abiotic Stimuli in Plants: A Complex Role for Calcium. In: Balu¿ka, F. (eds) Plant-Environment Interactions. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89230-4_14

Download citation

Publish with us

Policies and ethics