Skip to main content

An Overview of Silica in Biology: Its Chemistry and Recent Technological Advances

  • Chapter
  • First Online:
Biosilica in Evolution, Morphogenesis, and Nanobiotechnology

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 47))

Abstract

Biomineralisation is widespread in the biological world and occurs in bacteria, single-celled protists, plants, invertebrates and vertebrates. Minerals formed in the biological environment often show unusual physical properties (e.g. strength, degree of hydration) and often have structures that exhibit order on many length scales. Biosilica, found in single cell organisms through to higher plants and primitive animals (sponges), is formed from an environment that is undersaturated with respect to silicon and under conditions of around neutral pH and low temperature, ca. 4–40°C. Formation of the mineral may occur intra- or extra-cellularly, and specific biochemical locations for mineral deposition that include lipids, proteins and carbohydrates are known. In most cases, the formation of the mineral phase is linked to cellular processes, understanding of which could lead to the design of new materials for biomedical, optical and other applications. This Chapter briefly describes the occurrence of silica in biology including known roles for the mineral phase, the chemistry of the material, the associated biomolecules and some recent applications of this knowledge in materials chemistry.

The terminology which is used in this and other contributions within this volume is as follows:

  • Si: the chemical symbol for the element and the generic term used when the nature of the specific silicon compound is not known.

  • Si(OH) 4: orthosilicic acid, the fundamental building block used in the formation of silicas.

  • SiO 2nH 2O or SiO 2−x(OH) 2x2H 2O: amorphous, hydrated, polymerised material.

  • Oligomerisation: the formation of dimers and small oligomers from orthosilicic acid by removal of water. For example, 2Si(OH)4 ↔ (HO)3Si–O–Si(OH)3 + H2O

  • Polymerisation: the mutual condensation of silicic acid to give molecularly coherent units of increasing size.

  • Organosilicon compound: must contain silicon covalently bonded to carbon within a distinct chemical species

  • Silane: a compound having silicon atom(s) and organic chemical groups often connected through an oxygen linkage; e.g. tetrethoxy or tetramethoxysilane

  • Silanol: hydroxyl group bonded to silicon atom

  • Silicate: a chemically specific ion having negative charge (e.g. \({\rm{SiO}}_3 {}^{2 - }\)), term also used to describe salts (e.g. sodium silicate Na2SiO3)

  • Opal: the term used to describe the gem-stone and often used to describe the type of amorphous silica produced by biological organisms. The two are similar in structure at the molecular level (disordered or amorphous), but at higher levels of structural organisation are distinct from one another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Annenkov VV, Patwardhan SV, Belton D, Danilovtseva EN, Perry CC (2006) A new stepwise synthesis of a family of propylamines derived from diatom silaffins and their activity in silicification Chem. Commun. 14:1521–1523

    Google Scholar 

  • Bao ZH, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang ZT, Abernathy HW, Summers CJ, Liu ML, Sandhage KH (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446(7132):172–175

    Article  CAS  PubMed  Google Scholar 

  • Bélanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp tritici). Phytopathology 93:402–412

    Article  PubMed  Google Scholar 

  • Belton DJ, Paine G, Patwardhan SV, Perry CC (2004) Towards an understanding of (bio)silicification: the role of amino acids and lysine oligomers in silicification. J. Mater. Chem. 14:2231–2241

    Article  CAS  Google Scholar 

  • Belton DJ, Patwardham S V, Perry CC (2005a) Putrescine homologues control silica morphogenesis by electrostatic interactions and the hydrophobic effect. Chem. Commun. 3475–3477

    Google Scholar 

  • Belton DJ, Patwardhan S V, Perry CC (2005b) Spermine, spermidine and their analogues generate tailored silcas. J. Mater. Chem. 15:4629–4638

    Article  CAS  Google Scholar 

  • Blank GS, Sullivan CW (1983) Diatom mineralization of silicic acid. VI. The effects of microtu-bule inhibitors on silicic acid metabolism in Navicula saprophila. J. Phycol. 19:39–44

    Article  CAS  Google Scholar 

  • Brott LL, Naik RR, Pikas DJ, Kirkpatrick SM, Tomlin DW, Whitlock PW, Clarson SJ, Stone MO (2001) Ultrafast holographic nanopatterning of biocatalytically formed silica. Nature 413(6853):291–293

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Allan SM, Sandhage KH (2005) Three-dimensional magnesia-based nanocrystal assemblies via low temperature magnesiothermic reaction of diatom microshells. J. Am. Ceram. Soc. 88(7):2005–2010

    Article  CAS  Google Scholar 

  • Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl. Acad. Sci. USA 96:361–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chérif M, Benhamou N, Menzies JG, Bélanger RR (1992) Silicon induced resistance in cucumber plants against Pythium ultimum. Physiol. Mol. Plant Pathol. 41:411–425

    Article  Google Scholar 

  • Chérif M, Asselin A, Bélanger RR (1994) Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84:236–242

    Article  Google Scholar 

  • Chiappino ML, Volcani BE (1977) Studies on the biochemistry and fine structure of silica shell formation in diatoms. VIII. Sequential cell wall development in the pennate Navicula pelliculosa. Protoplasma 93:205–221

    Article  Google Scholar 

  • Cole KE, Ortiz AN, Schoonen MA, Valentine AM (2006) Peptide- and long-chain polyamine-induced synthesis of micro- and nanostructured titanium phosphate and protein encapsulation. Chem. Mater. 18(19):4592–4599

    Article  CAS  Google Scholar 

  • Coombs J, Volcani BE (1968) Studies on the biochemistry and fine structure of silica-shell formation in diatoms. Chemical changes in the wall of Navicula pelliculosa during its formation. Planta 82:280–292

    CAS  PubMed  Google Scholar 

  • Coradin T, Livage J (2001) Effect of some amino acids and peptides on silicic acid polymerisation. Coll. Surf. B: Biointerfaces 21:329–336

    Article  CAS  Google Scholar 

  • Curnow P, Bessett PH, Kisailus D, Murr MM, Daugherty PS, Morse DE (2005) Enzymatic synthesis of layered titanium phosphates at low temperature and neutral pH by cell-surface display of silicatein-alpha. J. Am. Chem. Soc. 127(45):15749–15755

    Article  CAS  PubMed  Google Scholar 

  • Curnow P, Kisailus D, Morse DE (2006) Biocatalytic synthesis of poly(L-lactide) by native and recombinant forms of the silicatein enzymes Angew. Chem. Int. Ed. 45(4):613–616

    Article  CAS  Google Scholar 

  • Currie HA, Perry CC (2007) Silica in plants. Annals in Botany 100:1383–1389, doi: 10.1093/aob/mcm247

    Article  CAS  Google Scholar 

  • Dickerson MB, Naik RR, Sarosi PM, Agarwal G, Stone MO, Sandhage KH (2005) Ceramic nano-particle assemblies with tailored shapes and tailored chemistries via biosculpting and shape preserving inorganic conversion. J. Nanosci. Nanotechnol. 5(1):63–67

    Article  CAS  PubMed  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA 91:11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein E (1999) Silicon. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50:641–664

    Article  CAS  Google Scholar 

  • Fawe A, Abou-Zaid M, Menzies JG, Bélanger RR (1998) Silicon-mediated accumulation of flavinoid phytoalexins in cucumber. Phytopathology 88:396–401

    Article  CAS  PubMed  Google Scholar 

  • Foo CWP, Patwardhan SV, Belton DJ, Kitchel B, Anastasiades D, Huang J, Naik RR, Perry CC, Kaplan DL (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc. Natl. Acad. Sci. 103(25):9428–9433

    Article  CAS  Google Scholar 

  • Frigeri LG, Radabaugh TR, Haynes PA, Hildebrand M (2006) Identification of proteins from a cell wall fraction of the diatom Thalassiosira pseudonana – Insights into silica structure formation. Mol. Cell. Proteomics 5(1):182–193

    Article  CAS  PubMed  Google Scholar 

  • Harrison CC (1996) Evidence for intramolecular macromolecules containing protein from plant silicas. Phytochemistry 41:37–42

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand M, Volcani BE, Gassmann W, Schroeder JI (1997) A gene family of silicon transporters. Nature 385:688–689

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand M, Dahlin K, Volcani BE (1998) Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: sequences, expression analysis, and identification of homologs in other diatoms. Mol. Gen. Genet. 260:480–486

    Article  CAS  PubMed  Google Scholar 

  • Iler RK. 1979. The chemistry of silica. Wiley, New York

    Google Scholar 

  • Kauss H, Seehaus, K, Franke R, Gilbert S, Dietrich RA, Kröger N (2003) Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant J 33:87–95

    Article  CAS  PubMed  Google Scholar 

  • Kidd PS, Llugany M, Gunsé B, Barceló J (2001) The role of root exudates in aluminium resistance and silicon induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 52:1339–1352

    CAS  PubMed  Google Scholar 

  • Kim DJ, Lee KB, Chi YS, Kim WJ, Paik HJ, Choi IS (2004) Biomimetic formation of silica thin films by surface-initiated polymerisation of 2-(dimethylamino) ethyl methacrylate and silicic acid. Langmuir 20(19):7904–7906

    Article  CAS  PubMed  Google Scholar 

  • Kisailus D, Choi JH, Weaver JC, Yang WJ, Morse DE (2005) Enzymatic synthesis and nanostruc-tural control of gallium oxide at low temperature. Adv. Mater. 17(3):314–318

    Article  CAS  Google Scholar 

  • Knecht MR, Wright DW (2003) Functional analysis of the biomimetic silica precipitating activity of the R5 peptide from Cylindrotheca fusiformis. Chem. Commun. 24:3038–3039

    Article  CAS  Google Scholar 

  • Knecht MR, Wright DW (2004) Amine-terminated dendrimers as biomimetic templates for silica nanosphere formation. Langmuir 20(11):4728–4732

    Article  CAS  PubMed  Google Scholar 

  • Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    Article  PubMed  Google Scholar 

  • Kröger N, Deutzmann R, Bergsdorf C, Sumper M (2000) Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. USA 97:14133–14138

    Article  PubMed  PubMed Central  Google Scholar 

  • Kröger N, Deutzmann R, Sumper M (2001) Silica-precipitating peptides from diatoms, the chemical structure of silaffin-1a from Cylindotheca fusiformis. J. Biol. Chem. 276:26066–26070

    Article  PubMed  Google Scholar 

  • Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586

    Article  CAS  PubMed  Google Scholar 

  • Kusari U, Bao Z, Cai Y, Ahmad G, Sandhage KH, Sneddon LG (2007) Formation of nanostruc-tured, nanocrystalline boron nitride microparticles with diatom-derived 3-D shapes. Chem. Commun. 11:1177–1179

    Article  CAS  Google Scholar 

  • Liang YC, Sun WC, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollut. 147(2):422–428

    Article  CAS  PubMed  Google Scholar 

  • Lenoci L, Camp PJ (2006) Self-assembly of peptide scaffolds in biosilica formation: Computer simulation of a coarse-grained model. J. Am. Chem. Soc. 128(31):10111–10117

    Article  CAS  PubMed  Google Scholar 

  • Levi C, Barton JL, Guillemet C, le Bras E, Lehuede P (1989) A remarkably strong natural glassy rod- the anchoring spicule of the monraphis sponge. J. Mater. Sci. Lett. 8(3):337–339

    Article  CAS  Google Scholar 

  • Luckarift HR, Spain JC, Naik RR, Stone MO (2004) Enzyme immobilization in a biomimetic support. Nat. Biotechnol. 22(2):211–213

    Article  CAS  PubMed  Google Scholar 

  • Ma J-F, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11:392–397

    Article  CAS  PubMed  Google Scholar 

  • Ma J-F, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–669

    Article  CAS  PubMed  Google Scholar 

  • Maldonado M, Carmona MC, Uriz MJ, Cruzado A (1999) Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature 401:785–787

    Article  CAS  Google Scholar 

  • Mann S, Perry CC (1986) Structural aspects of biogenic silica. Ciba Found. Symp. 121:40–58

    CAS  PubMed  Google Scholar 

  • Mitani N, Ma J-F (2005) Uptake system of silicon in different plant species. J. Exp. Biol. 56:1255–1261

    CAS  Google Scholar 

  • Moussa HR (2006) Influence of exogenous application of silicon on physiological response of salt stressed maize (Zea mays L.). Int. J. Agric. Biol. 8:293–297

    CAS  Google Scholar 

  • Müller WEG, Rothernberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res. 321:285–297

    Article  PubMed  Google Scholar 

  • Naik RR, Whitlock PW, Rodriguez F, Brott LL, Glawe DD, Clarson SJ, Stone MO (2003) Controlled formation of biosilica structures in vitro. Chem. Commun. 24:238–239

    Article  CAS  Google Scholar 

  • Nakajima T, Volcani BE (1970) Eta-N-trimethyl-L-gamma hydroxylysine phosphate and its non-phosphorylated compound in diatom cell walls. Biochem. Biophys. Res. Commun. 39:28–33

    Article  CAS  PubMed  Google Scholar 

  • Nakajima T, Volcani BE (1969) 3,4-dihydroxyproline: a new amino acid in diatom cell walls. Science 164:1400–1401

    Article  CAS  PubMed  Google Scholar 

  • Neuman D, zur Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochem. 56:685–692

    Article  Google Scholar 

  • Patwardhan SV, Clarson SC (2002) Silicification and Biosilicification Part 3: role of synthetic polymers and polypeptides at neutral pH. Silicon Chem. 1(3):207–214

    Article  CAS  Google Scholar 

  • Patwardhan SV, Maheshwari R, Mukherjee N, Kiick KL, Clarson SJ (2006) Conformation and assembly of polypeptide scaffolds in templating the synthesis of silica: an example of a polylysine macromolecular ‘switch’. Biomacromolecules 7:491–497

    Article  CAS  PubMed  Google Scholar 

  • Patwardhan SV, Shiba K, Schröder HC, Müller WEG, Clarson SC, Perry CC (2007) The interaction of ‘silicon’ with proteins: part 2. The role of bioinspired peptides and recombinant proteins in silica polymerization ACS. Symp. Ser. 964:328–347

    CAS  Google Scholar 

  • Perry CC (2003) Silicification: the processes by which organisms capture and mineralize silica. Rev. Miner. and Geochem. (Dove PM, De Yoreo JJ, Weiner S, eds) 54:291–327

    Article  CAS  Google Scholar 

  • Perry CC, Fraser MA (1991) Silica deposition and ultrastructure in the cell wall of Equisetum arvense: the importance of cell wall structures and flow control in biosilicification? Phil. Trans. Roy. Soc. Lond. B 334:149–157

    Article  Google Scholar 

  • Perry CC, Keeling-Tucker T (1998) Crystalline silica prepared at room temperature from aqueous solution in the presence of intrasilica bioextracts. Chem. Commun. 2587–2588

    Google Scholar 

  • Perry CC, Keeling-Tucker T (2000) Biosilicification: the role of the organic matrix in structure control. J. Biol. Inorg. Chem. 5:537–550

    Article  CAS  PubMed  Google Scholar 

  • Perry CC, Keeling-Tucker T (2003) Model studies of colloidal silica precipitation using biosilica Extracts from Equisetum telmatia. Coll. Polym. Sci. 281:652–664

    Article  CAS  Google Scholar 

  • Perry CC, Lu Y (1992) Preparation of silicas from silicon complexes: role of cellulose in polymerisation and aggregation control. Farad. Trans. 88:2915–2921

    Article  CAS  Google Scholar 

  • Perry CC, Mann S, Williams RJP (1984) Structural and analytical studies of the silicified macrohairs from the lemma of the grass Phalaris canariensis L. Proc. Roy. Soc. Lond. B 222:427–438

    Article  CAS  Google Scholar 

  • Perry CC, Moss EJ, Williams RJP (1990) A staining agent for biological silica. Proc. Roy. Soc. Lond. B 241:47–50

    Article  CAS  Google Scholar 

  • Pisera A (2003) Some aspects of silica deposition in Lithistid demosponge desmas. Microsc. Res. Tech. 62:312–326

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues FA, Benhamou N, Datnoff LE, Jones JB, Bélanger RR (2003) Ultrastructural and cyto-chemical aspects of silicon-mediated rice blast resistance. Phytopathology 93:535–546

    Article  CAS  PubMed  Google Scholar 

  • Shian S, Cai Y, Weatherspoon MR, Allan SM, Sandhage KH (2006) Three-dimensional assemblies of zirconia nanocrystals via shape-preserving reactive conversion of diatom microshells. J. Am. Ceram. Soc. 89(2):694–698

    Article  CAS  Google Scholar 

  • Schröder HC, Krasko A, Batel R, Skorokhod A, Pahler S, Kruse M, Müller IM, Müller WEG (2000) Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin-related molecule from Suberites domuncula. FASEB J. 14:2022–2031

    Article  PubMed  Google Scholar 

  • Schröder HC, Krasko A, Le Pennec G, Adell T, Wiens M, Hassanein H, Müller IM, Müller WEG (2003) Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. Prog. Mol. Subcell. Biol. 33:250–268

    Google Scholar 

  • Schröder HC, Perovié-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller IM, Müller WEG (2004) Silicon transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem. J. 381:665–673

    Article  PubMed  PubMed Central  Google Scholar 

  • Schröder HC, Boreiko O, Krasko A, Reiber A, Schwertner H, Müller WEG (2005) Mineralization of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces J. Biomed. Mater. Res. Part B Appl. Biomater. 75B(2):387–392

    Article  CAS  Google Scholar 

  • Shröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, Müller IM, Müller WEG (2006) Co-expression and functional interaction of silicatein with galectin. J. Biol. Chem. 281(17):12001–12009

    Article  CAS  Google Scholar 

  • Schröder HC, Brandt D, Schlobmacher U, Wang X, Tahir MN, Tremel W, Belikov SI, Müller WEG (2007) Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine) Naturwissenschaften 94:339–359

    Article  CAS  PubMed  Google Scholar 

  • Sewell SL, Wright DW (2006) Biomimetic synthesis of titanium dioxide utilizing the R5 peptide derived from Cylindrotheca fusiformis. Chem. Mater. 18(13):3108–3113

    Article  CAS  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, He Y, Qian Q, Yu, J (2005) Silicon mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66:1551–1559

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein α: cathepsin L-like protein in sponge biosilica. Proc. Natl. Acad. Sci. USA 95:6234–6238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Sumerel JL, Yang WJ, Kisailus D, Weaver JC, Choi JH, Morse DE (2003) Biocatylitically templated synthesis of titanium dioxide. Chem. Mater. 15(25):4804–4809

    Article  CAS  Google Scholar 

  • Sumper M, Kröger N (2004) Silica formation in diatoms: the function of long chain polyamines and silaffins. J. Mater. Chem. 14:2059–2065

    Article  CAS  Google Scholar 

  • Sumper M, Brunner E, Lehmann G (2005) Biomineralization in diatoms: characterisation of novel polyamines associated with silica. FEBS Lett. 579(17):3765–3769

    Article  CAS  PubMed  Google Scholar 

  • Tahir MN, Theato P, Müller WEG, Schröder HC, Janshoff A, Zhang J, Huth J, Tremel W (2004) Monitoring the formation of biosilica catalysed by histidine-tagged silicatein. Chem. Commun. 24:2848–2849

    Article  Google Scholar 

  • Tahir MN, Theato P, Müller WEG, Schröder HC, Borejko A, Faiss S, Janshoff A, Huth J, Tremel W (2005) Formation of layered titania and zirconia catalysed by surface-bound silicatein. Chem. Commun. 44:5533–5535

    Article  CAS  Google Scholar 

  • Tahir MN, Eberhardt M, Therese HA, Kolb U, Theato P, Müller WEG, Schrüder HC, Tremel W (2006) From single molecules to nanoscopically structured functional materials: Au nanocrystal growth on TiO2 nanowires controlled by surface-bound silicatein. Angew. Chem. Int. Ed. 45(29):4803–4809

    Article  CAS  Google Scholar 

  • Tilburey GE, Patwardhan S V, Huang J, Kaplan DL, Perry CC (2007) ‘Are hydroxyl containing biomolecules important in (bio)silicification? A model study’. J. Phys. Chem. B 111(17) 4630–4638

    Article  CAS  PubMed  Google Scholar 

  • Tomczak MM, Glawe DD, Drummy LF, Lawrence CG, Stone MO, Perry CC, Pochan DJ, Deming TJ, Naik RR (2005) Polypeptide templated synthesis of hexagonal silica platelets. J. Am. Chem. Soc. 127:12577–12582

    Article  CAS  PubMed  Google Scholar 

  • Van der Meene AML, Pickett-Heaps JD (2002) Valve morphogenesis in the centric diatom Proboscia alalta Sundstrom. J. Phycol. 38:351–363

    Article  Google Scholar 

  • Van Hoest PJ (2006) Rice straw, the role of silica and treatments to improve quality. Anim. Feed Sci. Technol. 130:137–171

    Article  CAS  Google Scholar 

  • Vrieling EG, Beelen TPM, van Santen RA, Gieskes WWC (2002) Mesophases of (bio)polymer-silica particles inspire a model for silica biomineralization in diatoms. Angew. Chem. Int. Ed. 41:1543–1546

    Article  CAS  Google Scholar 

  • Wang L, Nie Q, Li M, Zhang F, Zhuang J, Yang W, Li T, Wang Y (2005) Biosilicified structures for cooling plant leaves: a mechanism of highly efficient midinfrared thermal emission. Appl. Phys. Lett. 87:194105

    Article  CAS  Google Scholar 

  • Weatherspoon MR, Haluska MS, Cai Y, King JS, Summers CJ, Snyder RL, Sandhage KH (2006) Phosphor microparticles of controlled three-dimensional shape from phytoplankton. J. Electrochem. Soc. 153(2):H34–H37

    Article  CAS  Google Scholar 

  • Wetherbee R, Crawford S, Mulvaney P (2000) The nanostructure and development of diatom biosilica. In: Bauerlein E (ed) Biomineralization, from Biology to Biotechnology and Medical Applications. Wiley VCH, Weinheim, Germany, pp189–206

    Google Scholar 

  • Yoshida S, Ohnishi Y, Kitagishi K (1962) Histochemistry of silicon in rice plant III. The presence of cuticle silica-double layer in the epidermal tissue. Soil Sci. Plant Nutr. 8:1–5

    Google Scholar 

  • Zhou Y, Shimizu K, Cha JN, Stucky GD, Morse DE (1999) Efficient catalysis of polysiloxane synthesis by silicatein α requires specific hydroxy and imidazole functionalities. Angew. Chem. Int. Ed.38:780–782

    Article  CAS  Google Scholar 

  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 167:527–533

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Perry, C.C. (2009). An Overview of Silica in Biology: Its Chemistry and Recent Technological Advances. In: Müller, W.E.G., Grachev, M.A. (eds) Biosilica in Evolution, Morphogenesis, and Nanobiotechnology. Progress in Molecular and Subcellular Biology, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88552-8_13

Download citation

Publish with us

Policies and ethics