Skip to main content

A Method of Landmark Visual Tracking for Mobile Robot

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5314))

Included in the following conference series:

Abstract

Landmark tracking is key factor for mobile robots localization and navigation. This paper proposes a combined approach automatically to detect and track landmark. Firstly, a landmark is initially located in the image coordinates by features recognition- SIFT (Scale Invariant Feature Transform) and matching technology-RANSAC(Random Sample Consensus). Then based on similarity distance, tracking algorithm is called, which depends on adaptive particle filter. Furthermore, re-position strategy based SIFT is also presented to catch the landmark which was lost. Finally, the experimental results show that the proposed method achieves robust and real-time tracking of a landmark and has a practical value for robot visual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Se, S., Lowe, D., Little, J.: Vision-based mobile robot localization and mapping using scale-invariant features. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2051–2058 (2001)

    Google Scholar 

  2. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transaction on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)

    Article  Google Scholar 

  3. Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondence. In: Proceedings of the IEEE International Conference Computer Vision Pattern Recognition, vol. 1(1), pp. 26–33 (2005)

    Google Scholar 

  4. Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3D object modeling and recognition using affine-invariant patches and multi-view spatial constraints. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2(2), pp. 272–277 (2003)

    Google Scholar 

  5. Lowe, D.G.: Distinctive image features from scale-invariant key points. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  6. Moravec, H.: Towards automatic visual obstacle avoidance. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 584–596 (1977)

    Google Scholar 

  7. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  8. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transaction on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  9. Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of IEEE Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  10. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(5), 564–577 (2003)

    Article  Google Scholar 

  11. Collins, R.T.: Mean-shift blob tracking through scale space. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 234–240 (2003)

    Google Scholar 

  12. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 17, 790–799 (1995)

    Article  Google Scholar 

  13. Maskell, S., Gordon, N.: A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Processing 50(2), 174–188 (2002)

    Article  Google Scholar 

  14. Zhaowen, W., Xiaokang, Y., Yi, X., et al.: Camshift Guided Particle Filter for Visual Tracking. In: IEEE Workshop on Signal Processing Systems, pp. 301–306 (2007)

    Google Scholar 

  15. Fischler, M.A., Bolles, C.R.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  16. Beis, J.S., Lowe, D.G.: Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In: Proceedings of computer vision and pattern recognition, pp. 1000–1006 (1997)

    Google Scholar 

  17. Hartley, R.I.: In Defense of the Eight-Point Algorithm. IEEE Trans. Pattern Analysis and Machine Intelligence 19(6), 580–593 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, L., Li, R., Zang, T., Sun, L., Fan, X. (2008). A Method of Landmark Visual Tracking for Mobile Robot. In: Xiong, C., Huang, Y., Xiong, Y., Liu, H. (eds) Intelligent Robotics and Applications. ICIRA 2008. Lecture Notes in Computer Science(), vol 5314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88513-9_97

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88513-9_97

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88512-2

  • Online ISBN: 978-3-540-88513-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics