Skip to main content

Lower Bounds for Generalized Quantum Finite Automata

  • Conference paper
Language and Automata Theory and Applications (LATA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5196))

Abstract

We obtain several lower bounds on the language recognition power of Nayak’s generalized quantum finite automata (GQFA) [12]. Techniques for proving lower bounds on Kondacs and Watrous’ one-way quantum finite automata (KWQFA) were introduced by Ambainis and Freivalds [2], and were expanded in a series of papers. We show that many of these techniques can be adapted to prove lower bounds for GQFAs. Our results imply that the class of languages recognized by GQFAs is not closed under union. Furthermore, we show that there are languages which can be recognized by GQFAs with probability p > 1/2, but not with p > 2/3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M., Thérien, D.: Algebraic results on quantum automata. Theory of Computing Systems 38, 165–188 (2006)

    Article  Google Scholar 

  2. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: 39th Annual Symposium on Foundations of Computer Science, pp. 332–341 (1998)

    Google Scholar 

  3. Ambainis, A., Ķikusts, A.: Exact results for accepting probabilities of quantum automata. Theoretical Computer Science 295(1–3), 3–25 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ambainis, A., Ķikusts, A., Valdats, M.: On the class of languages recognizable by 1-way quantum finite automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 75–86. Springer, Heidelberg (2001)

    Google Scholar 

  5. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and development 6, 525–532 (1973)

    Article  Google Scholar 

  6. Bertoni, A., Mereghetti, C., Palano, B.: Quantum computing: 1-way quantum automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM Journal on Computing 31(5), 1456–1478 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ciamarra, M.P.: Quantum reversibility and a new model of quantum automaton. Fundamentals of Computation Theory 13, 376–379 (2001)

    Article  Google Scholar 

  9. Golovkins, M., Pin, J.-É.: Varieties generated by certain models of reversible finite automata. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 83–93. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: 38th Annual Symposium on Foundations of Computer Science, pp. 66–75. IEEE Computer Society Press, Los Alamitos (1997)

    Chapter  Google Scholar 

  11. Moore, C., Crutchfield, J.: Quantum automata and quantum grammars. Theoretical Computer Science 237(1-2), 275–306 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: 40th Annual Symposium on Foundations of Computer Science, pp. 369–377 (1999)

    Google Scholar 

  13. Nayak, A., Salzman, J.: On communication over an entanglement-assisted quantum channel. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on the Theory of Computing, pp. 698–704 (2002)

    Google Scholar 

  14. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  15. Pin, J.-É.: k BG=PG, a success story. In: Fountain, J. (ed.) NATO Advanced Study Institute Semigroups, Formal Languages, and Groups, pp. 33–47. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  16. Rabin, M.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)

    Article  Google Scholar 

  17. Yao, A.C.-C.: Quantum circuit complexity. In: Proceedings of the 36th annual Symposium on Foundations of Computer Science, pp. 352–361 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mercer, M. (2008). Lower Bounds for Generalized Quantum Finite Automata. In: Martín-Vide, C., Otto, F., Fernau, H. (eds) Language and Automata Theory and Applications. LATA 2008. Lecture Notes in Computer Science, vol 5196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88282-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88282-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88281-7

  • Online ISBN: 978-3-540-88282-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics