Skip to main content

Quantum Computing: 1-Way Quantum Automata

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2710))

Included in the following conference series:

Abstract

In this paper we analyze several models of 1-way quantum finite automata, in the light of formal power series theory. In this general context, we recall two well known constructions, by proving:

  1. 1.

    Languages generated with isolated cut-point by a class of bounded rational formal series are regular.

  2. 2.

    If a class of formal series is closed under f-complement, Hadamard product and convex linear combination, then the class of languages generated with isolated cut-point is closed under boolean operations.

We introduce a general model of 1-way quantum automata and we compare their behaviors with those of measure-once, measure-many and reversible 1-way quantum automata.

Partially supported by MURST, under the project “Linguaggi formali: teoria ed applicazioni”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ambainis and R. Freivalds. 1-way quantum finite automata: strengths, weaknesses and generalizations. In Proc. 39th Symposium on Foundations of Computer. Science, pp. 332–342, 1998.

    Google Scholar 

  2. A. Ambainis, A. Kikusts, and M. Valdats. On the class of languages recognizable by 1-way quantum finite automata. In Proc. 18th Annual Symposium on Theoretical. Aspects of Computer Science, LNCS 2010, Springer, pp. 305–316, 2001. Also as Technical Report quant-ph/0001005.

    Google Scholar 

  3. L. Baldi and G. Cerofolini. La Legge di Moore e lo sviluppo dei circuiti integrati. Mondo Digitale, 3:3–15, 2002 (in Italian).

    Google Scholar 

  4. P. Benioff. Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys., 29:515–546, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Berstel and C. Reutenauer. Rational series and their languages. EATCS Monographs on Theoretical Computer Science, vol. 12, Springer-Verlag, 1988.

    Google Scholar 

  6. A. Bertoni and M. Carpentieri. Regular languages accepted by quantum automata. Information and Computation, 165:174–182, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Bertoni and M. Carpentieri. Analogies and differences between quantum and stochastic automata. Theoretical Computer Science, 262:69–81, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Brodsky and N. Pippenger. Characterizations of 1-way quantum finite automata. Technical Report TR-99-03, Department of Computer Science, University of British Columbia, 2000.

    Google Scholar 

  9. E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput., 26:1411–1473, 1997. A preliminary version appeared in Proc. 25th ACM Symp. on. Theory of Computation, pp. 11-20, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. London Ser. A, 400:97–117, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Feynman. Simulating physics with computers. Int. J. Theoretical Physics, 21:467–488, 1982.

    Article  MathSciNet  Google Scholar 

  12. M. Golovkins and M. Kravtsev. Probabilistic Reversible Automata and Quantum Automata. In Proc. 8th International Computing and Combinatorics Conference, LNCS 2387, Springer, pp. 574–583, 2002

    Google Scholar 

  13. L. Grover. A fast quantum mechanical algorithm for database search. In Proc. 28th ACM Symposium on Theory of Computing, pp. 212–219, 1996.

    Google Scholar 

  14. J. Gruska. Quantum Computing. McGraw-Hill, 1999.

    Google Scholar 

  15. J. Gruska. Descriptional complexity issues in quantum computing. J. Automata, Languages and Combinatorics, 5:191–218, 2000.

    MATH  MathSciNet  Google Scholar 

  16. W. Höffdings. Probability inequalities for sums of bounded random variables. J. American Statistical Association, 58:13–30, 1963.

    Article  Google Scholar 

  17. A. Kondacs and J. Watrous. On the power of quantum finite state automata. In 38th Symposium on Foundations of Computer Science, pp. 66–75, 1997.

    Google Scholar 

  18. M. Marcus and H. Minc. Introduction to Linear Algebra. The Macmillan Company, 1965. Reprinted by Dover, 1988.

    Google Scholar 

  19. M. Marcus and H. Minc. A Survey of Matrix Theory and Matrix Inequalities. Prindle, Weber & Schmidt, 1964. Reprinted by Dover, 1992.

    Google Scholar 

  20. G.E. Moore. Progress in Digital Integrated Electronics. In Digest of the 1975. International Electron Devices Meeting, IEEE, pp. 11–13, 1975.

    Google Scholar 

  21. C. Moore and J. Crutchfield. Quantum automata and quantum grammars. Theoretical. Computer Science, 237:275–306, 2000. A preliminary version of this work appears as Technical Report in 1997.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Nayak. Optimal lower bounds for quantum automata and random access codes. In Proc. 40th Symposium on Foundations of Computer Science. pp. 369–376, 1999.

    Google Scholar 

  23. A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.

    Google Scholar 

  24. J.E. Pin. On languages accepted by finite reversible automata. In Proc. 14th. International Colloquium on Automata, Languages and Programming, LNCS 267, pp. 237–249. Springer-Verlag, 1987.

    Google Scholar 

  25. M. Rabin. Probabilistic automata. Information and Control, 6:230–245, 1963.

    Article  Google Scholar 

  26. P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26:1484–1509, 1997. A preliminary version appeared in Proc. 35th IEEE Symp. on Foundations. of Computer Science, pp. 20–22, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  27. M.P. Schützenberger. On the definition of a family of automata. Information and. Control, 4:245–270, 1961.

    Article  MATH  MathSciNet  Google Scholar 

  28. A. Salomaa and M. Soittola. Automata-theoretic aspects of formal power series. Texts and Monographs in Computer Science, Springer-Verlag, 1978.

    Google Scholar 

  29. P. Turakainen. Generalized automata and stochastic languages. Proc. Amer. Math. Soc., 21:303–309, 1969.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bertoni, A., Mereghetti, C., Palano, B. (2003). Quantum Computing: 1-Way Quantum Automata. In: Ésik, Z., Fülöp, Z. (eds) Developments in Language Theory. DLT 2003. Lecture Notes in Computer Science, vol 2710. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45007-6_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45007-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40434-7

  • Online ISBN: 978-3-540-45007-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics