Skip to main content

Botrytis cinerea: Molecular Aspects of a Necrotrophic Life Style

  • Chapter
Plant Relationships

Part of the book series: The Mycota ((MYCOTA,volume 5))

Abstract

Pathogenic fungi have developed a wide range of strategies to infect and colonize plants. Traditionally they are grouped into the major classes necrotroph/ hemi-biotroph/biotroph, according to major criteria like their source of nutrition (living vs dead cells), their ability to infect young and healthy tissue or a preference to older or senescent ones, the formation of specialized infection structures (haustoria), and more recently the type of plant defence reaction they provoke (e.g. jasmonate vs salicylic acid pathway). In many cases these criteria do not allow unequivocal decisions for the grouping of pathogens, as pointed out in the recent review by Oliver and Ipcho (2004). As an example, they list references grouping Phythophthora infestans in all three classes, and other references naming Magnaporthe grisea a necrotroph or a hemi-biotroph. Detailed cytological analyses only recently brought unequivocal evidence about the true biotrophic nature of the early infection stage of M. grisea (Kankanala et al. 2007), but still the exact mode of the switch to necrotrophic growth is unclear. Thus it needs much more detailed structural and physiological studies to fully understand the nature of a specific fungus–host interaction; and the question remains whether the old classification system is still helpful, because of the large degree of variation observed in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, Dietrich RA, Mengiste T (2006) Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J 48:28-44

    Article  PubMed  CAS  Google Scholar 

  • Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in micro- bial eukaryotes. Trends Microbiol 13:111-118

    Article  PubMed  CAS  Google Scholar 

  • Benito EP, Prins TW, van Kan JAL (1996) Application of differential display RT-PCR to the analysis of gene expression in a plant-fungus interaction. Plant Mol Biol 32:947-957

    Article  PubMed  CAS  Google Scholar 

  • Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1-16

    Article  PubMed  CAS  Google Scholar 

  • Boyce KJ, Hynes MJ, Andrianopoulos A (2005) The Ras and Rho GTPases genetically interact to co-ordinately regulate cell polarity during development in Penicillium marneffei. Mol Microbiol 55:1487-1501

    Article  PubMed  CAS  Google Scholar 

  • Brito N, Espinoso JJ, Gonzalez C (2006) The endo-ß-1,4- xylanase Xyn11A is required for virulence in Botrytis cinerea. Mol Plant-Microbe Interact 19:25-32

    Article  PubMed  CAS  Google Scholar 

  • Buck V, Quinn J, Soto Pino T, Martin H, Saldanha J, Makino M, Morgan BA, Millar JBA (2001) Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. Mol Biol Cell 12:407-419

    PubMed  CAS  Google Scholar 

  • Catlett NL, Yoder OC, Turgeon BG (2003) Whole genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2:1151-1161

    Article  PubMed  CAS  Google Scholar 

  • Chagué V, Elad Y, Barakat R, Tudzynski P, Sharon A (2002) Ethylene biosynthesis in Botrytis cinerea. FEMS Microbiol Ecol 40:143-149

    Article  PubMed  Google Scholar 

  • Chagué V, Danit LV, Siewers V, Schulze Gronover C, Tudzyn- ski P, Tudzynski B, Sharon A (2006) Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions? Mol Plant-Microbe Interact 19:33-42 Colmenares AJ, Aleu J, Duran-Patron R, Collado IG, Hernandez-Galan R (2002) The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J Chem Ecol 28:997-1005

    Google Scholar 

  • Deighton N, Muckenschnabel I, Colmenares AJ, Collado IG, Williamson B (2001) Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochem 57:689-692

    Article  CAS  Google Scholar 

  • del Sorbo G, Ruocco M, Schoonbeek HJ, Scala F, Pane C, Vinale F, de Waard MA (2008) Cloning and functional charakterization of BcatrA, a gene encoding an ABC tansporter of the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Mycol Res 112:737-746

    Article  PubMed  Google Scholar 

  • DeZwaan TM, Carroll AM, Valent B, Sweigard JA (1999) Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11:2013-2030

    Article  PubMed  CAS  Google Scholar 

  • Doehlemann G, Molitor F, Hahn M (2005) Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Fungal Gen Biol 42:601-610

    Article  CAS  Google Scholar 

  • Doehlemann G, Berndt P, Hahn M (2006a) Different signaling pathways involving a G-alpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol 59:821-835

    Article  PubMed  CAS  Google Scholar 

  • Doehlemann G, Berndt P, Hahn M (2006b) Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiology 152:2625-2634

    Article  PubMed  CAS  Google Scholar 

  • Egen MJ, Wang Z-Y, Jones MA, Smimoff N, Talbot NJ (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci USA 104:11772-11777

    Article  Google Scholar 

  • Elad Y, Williamson B, Tudzynski P, Delen N (eds) (2004) Botrytis spp.: biology, pathology and control. Kluwer, Dordrecht

    Google Scholar 

  • Espino JJ, Brito N, Noda J, Gonzalez C (2005) Botrytis cinerea endo-ß-1,4-glucanase Cel5A is expressed during infection but is not required for pathogenesis. Physiol Mol Plant Pathol 66:213-221

    Article  CAS  Google Scholar 

  • Faretra F, Pollastro S (1996) Genetic studies of the phytopath- ogenic fungus Botryotinia fuckeliana (Botrytis cinerea) by analysis of ordered tetrads. Mycol Res 100:620-624

    Article  Google Scholar 

  • Fernandez-Acero FJ, Jorge I, Calvo E, Vallejo I, Carbu M, Camafeita E, Garrido C, Lopez JA, Jorrin J, Cantoral JM (2007) Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Arch Microbiol 187:207-215

    Article  PubMed  CAS  Google Scholar 

  • Fillinger S, Amselem J, Artiguenave F, Billaut A, Choquer M, Couloux A, Cuomo C, Dickman MB, Fournier E, Gioti A, Giraud C, Kodira C, Kohn L, Legeai F, Levis C, Mauceli E, Pommier C, Pradier JM, Quevillon E, Rollins J, Ségurens B, Simon A, Viaud M, Weissenbach J, Wincker P, Lebrun M-H (2007) The genome projects of the plant pathogenic fungi Botrytis cinerea and Sclerotinia sclerotiorum. In: Jeandet P, Clement C, Conreux A (eds) Macromolecules of grape and wines. Lavoisier, Paris, pp 125-133

    Google Scholar 

  • Finkers R, van den Berg P, van Berloo R, ten Have A, van Heusden AW, van Kan JAL, Lindhout P, (2007) Three QTLs for Botrytis cinerea resisitance in tomato. Theoret Appl Gen 114:585-593

    Article  Google Scholar 

  • Fitzgerald A, van Kan JAL, Plummer KM (2004) Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chi- meric inverted repeats. Fungal Genet Biol 41:963-971

    Article  PubMed  CAS  Google Scholar 

  • Gioti A, Simon A, Le Pecheur P, Giraud C, Pradier JM, Viaud M, Levis C (2006) Expression profiling of Botrytis cinerea genes identifies three patterns of up-regulation in planta and an FKBP12 protein affecting pathogenicity. J Mol Biol 358:372-386.

    Article  PubMed  CAS  Google Scholar 

  • Erratum: J Mol Biol 364:550

    Google Scholar 

  • Gourgues M, Brunet-Simon A, Lebrun M-H, Levis C (2004) The tetraspanin BcPls1p is required for appresso- rium-mediated penetration of Botrytis cinerea into host plant leaves. Mol Microbiol 51:619-629

    Article  PubMed  CAS  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751-757

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Joosten HJ, Niu W, Zhao Z, Mariano PS, McCalman MT, van Kan JAL, Schaap PJ, Dunaway-Mariano D (2007) Oxaloacetate hydrolase: the C-C bond lyase of oxalate secreting fungi. J Biol Chem 282:9581-9590

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Schoonbeek HJ, De Waard MA (2002a) Expression of the ABC transporter BcatrD from Botrytis cinerea reduces sensitivity to sterol demeth- ylation inhibitor fungicides. Pesticide Biochem Phys- iol 73:110-121

    Article  CAS  Google Scholar 

  • Hayashi K, Schoonbeek HJ, De Waard MA (2002b) Bcmfs1, a novel major facilitator superfamily transporter from Botrytis cinerea, provides tolerance towards the natural toxic compounds camptothecin and cercosporin and towards fungicides. Appl Environ Microbiol 68:4996-5004

    Article  PubMed  CAS  Google Scholar 

  • Hoeberichts FA, ten Have A, Woltering EJ (2003) A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta 217:517-522

    Article  PubMed  CAS  Google Scholar 

  • Holz G, Coertze S, Wiiliamson B (2004) The ecology of Botrytis on plant surfaces. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis, biology, pathology and control. Kluwer, Dordrecht, pp 9-27

    Google Scholar 

  • Huang D, Bhairi S, Staples RC (1989) A transformation procedure for Botrytis squamosa. Current Genet 15:411-414

    Article  CAS  Google Scholar 

  • Jenczmionka NJ, Schäfer W (2005) The Gpmk1 MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes. Curr Genet 47:29-36

    Article  PubMed  CAS  Google Scholar 

  • Kankanala P, Czymmek K, Valent B (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:796-724

    Article  Google Scholar 

  • Kars I, Krooshof G, Wagemakers CAM, Joosten R, Benen JAE, van Kan JAL (2005a) Necrotising activity of five Botrytis cinerea endopolygalacturonases produced in Pichiapastoris. Plant J 43:213-225

    Article  PubMed  CAS  Google Scholar 

  • Kars I, Wagemakers CAM, McCalman M, van Kan JAL (2005b) Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted muta- genesis. Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10. Mol Plant Pathol 6:641-652

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein D, Rowe H (2007) Genomics of natural variation for signal production, perception and transduction in both plant host and fungal pathogen. In: Lorito M, Woo S, Scala F (eds) Biology of molecular plant- microbe interactions vol 6 (in press)

    Google Scholar 

  • Klimpel A, Schulze Gronover C, Williamson B, Stewart JA, Tudzynski B (2002) The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Mol Plant Pathol 3:439-450

    Article  PubMed  CAS  Google Scholar 

  • Kraus PR, Heitman J (2003) Coping with stress: calmodulin and calcineurin in model and pathogenic fungi. Bio- chem Biophys Res Commun 311:1151-1157

    Article  CAS  Google Scholar 

  • Kronstad JW (1997) Virulence and cAMP in smuts, blasts and blights. Trends Plant Sci 2:193-199

    Article  Google Scholar 

  • Kulkarni RD, Thon MR, Pan H, Dean R (2005) Novel G-protein- coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 6:R24

    Article  PubMed  Google Scholar 

  • Kunz C, Vandelle E, Rolland S. Poinssoit B, Bruel C, Cimer- man A, Zotti C, Moreau E, Vedel R, Pugin A, Boccara M (2006) Characterization of a new, nonpathogenic mutant of Botrytis cinerea with impaired plant colonization capacity. New Phytol 170:537-550

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Leroux P, Fillinger S (2008) The HOG 1-like MAP kinase Sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bos1 and is not involved in dicarboximide- and phenylpyrrole-resistance. Fungal Genet Biol 45:1062-1074

    Article  PubMed  CAS  Google Scholar 

  • Lyon GD, Goodman BA, Williamson B (2004) Botrytis cinerea pertubs redox processes as an attack strategy in plants. In: Elad Y, Williamson B, Tudzynski P, Delen, N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht, pp 119-141

    Google Scholar 

  • Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, Ruocco M, Ciliento R, Lanzuise S, Ferraioli S, Soriente I, Gigante S. Turra D, Fogliano V, Scala F, Lorito M (2007) Study of the three-way interaction between Trichode- rma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet (in press)

    Google Scholar 

  • Mengiste T (2008) Regulatory networks in plant responses to necrotrophic infections. In: Lorito M, Woo S, Scala F (eds) Biology of molecular plant-microbe interactions, vol 6 (in press)

    Google Scholar 

  • Mey G, Held K, Scheffer J, Tenberge KB, Tudzynski P (2002) CPMK2, an SLT2-homologous mitogen-acti- vated protein (MAP) kinase, is essential for patho- genesis of Claviceps purpurea on rye: evidence for a second conserved pathogenesis-related MAP kinase cascade in phytopathogenic fungi. Mol Microbiol 46:305-318

    Article  PubMed  CAS  Google Scholar 

  • Motoyama T, Ohira T, Kadokura K, Ichiishi A, Fujimura M, Yamaguchi I, Kudo T (2005) An Os1 family histidine kinase from a filamentous fungus confers fungicide sensitivity to yeast. Curr Genet 47:298-306

    Article  PubMed  CAS  Google Scholar 

  • Oliver RP, Ipcho SVS (2004) Arabidopsis pathology breathes new life into the necrotrophs-vs.biotrophs classification of fungal pathogens. Mol Plant Pathol 5:347-352

    Article  PubMed  CAS  Google Scholar 

  • Parsley TB, Segers GC, Nuss DL, Dawe AL (2003) Analysis of altered G-protein subunit accumulation in Cryph- onectria parasitica reveals a third Galpha homologue. Curr Genet 43:24-33

    PubMed  CAS  Google Scholar 

  • Prins TW, Wagemakers L, Schouten A, van Kan JAL (2000) Cloning and characterization of a glutathione S-transferase

    Google Scholar 

  • homologue from the plant-pathogenic fungus Botrytis cinerea. Mol Plant Pathol 105:273-283

    Google Scholar 

  • Quidde T, Büttner P, Tudzynski P (1999) Evidence for three different specific saponin-detoxifying activities in Botrytis cinerea and cloning and functional analysis of a gene coding for a putative avenacinase. Eur J Plant Pathol 1:169-178

    Google Scholar 

  • Reino JL, Hernández-Galán R, Durán-Patrón R, Collado IG (2004) Virulence-toxin production relationship in isolates of the plant pathogenic fungus Botrytis cinerea. J Phytopathol 152:563-566

    Article  CAS  Google Scholar 

  • Reis H, Pfiffi S, Hahn M (2005) Molecular and functional characterization of a secreted lipase from Botrytis cinerea. Mol Plant Pathol 6:257-267

    Article  PubMed  CAS  Google Scholar 

  • Rolke Y, Liu S, Quidde T, Williamson B, Schouten A, Weltring K-M, Siewers V, Tenberge KB, Tudzynski B, Tudzynski P (2004) Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol Plant Pathol 5:17-23

    Article  PubMed  CAS  Google Scholar 

  • Rolland S, Jobic C, Fevre M, Bruel C (2003) Agrobacterium- mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transferDNA host genomic DNA flanking sequences. Curr Genet 44:164-171

    Article  PubMed  CAS  Google Scholar 

  • Rui O, Hahn M (2007) The Slt2-type Map kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing, and host tissue colonization. Mol Plant Pathol 8:173-184

    Article  PubMed  CAS  Google Scholar 

  • Schoonbeek H, Del Sorbo G, De Waard MA (2001) The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol Plant-Microbe Interact 14:562-571

    Article  PubMed  CAS  Google Scholar 

  • Schouten A, Tenberge KB, Vermeer J, Stewart J, Wagemakers L, Williamson B, van Kan JAL (2002a) Functional analysis of an extracellular catalase of Botrytis cinerea. Mol Plant Pathol 3:227-238

    Article  PubMed  CAS  Google Scholar 

  • Schouten A, Wagemakers L, Stefanato FL, van der Kaaij RM, van Kan JA. (2002b) Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Mol Microbiol 43:883-894

    Article  PubMed  CAS  Google Scholar 

  • Schulze Gronover C, Kasulke D, Tudzynski P, Tudzynski B (2001) The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Mol Plant-Microbe Interact 14:1293-1302

    Article  Google Scholar 

  • Schulze Gronover C, Schorn C, Tudzynski, B (2004). Identification of Botrytis cinerea genes up-regulated during infection and controlled by the Ga subunit BCG1 using suppression subtractive hybridization (SSH). Mol Plant-Microbe Interact 17:537-546

    Article  PubMed  Google Scholar 

  • Schulze Gronover C, Schumacher J, Hantsch P, Tudzynski B (2005) A novel seven-helix transmembrane protein BTP1 of Botrytis cinerea controls expression of GST- encoding genes, but is not essential for pathogenicity. Mol Plant Pathol 6:243-256

    Article  Google Scholar 

  • Schumacher J, Viaud M, Simon A, Tudzynski B (2008a) The Galpha subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea. Mol Microbiol 67:1027-1050

    Article  PubMed  CAS  Google Scholar 

  • Schumacher J, de Larrinoa IF, Tudzynski B (2008b) Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulanece on bean plants. Eukaryot Cell 7:584-601

    Article  PubMed  CAS  Google Scholar 

  • Schumacher J, Kokkelink L, Huesmann C, Jimenez-Teja D, Collado I, Barakat R, Tudzynski P, Tudzynski B (2008c) The cAMP-dependent signaling pathway and its role in conidial germination, growth and virulence of the grey mould B. cinerea. Mol Plant-Microbe Interact (in press)

    Google Scholar 

  • Scott-Craig JS, Cheng Y-Q, Cervone F, de Lorenzo G, Pitkin JW, Walton JW (1998) Targeted mutants of Cochliobolus carbonum lacking the two major extracellular polyga- lacturonases. Appl Environ Microbiol 64:497-1503

    Google Scholar 

  • Segmüller N, Ellendorf U, Tudzynski B, Tudzynski P (2007) BcSAK1, a stress-activated MAPkinase is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot Cell 6:211-221

    Article  PubMed  Google Scholar 

  • Segmüller, Kokkelink L, Giesbert S, Odinius D, van Kan JAL, Tudzynski P (2008) NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant-Microbe Interact 21:808-819

    Article  PubMed  Google Scholar 

  • Sharon A, Elad Y, Barakat R, Tudzynski P (2004) Phyto- hormones in Botrytis-plant interactions. In: Elad Y, Williamson B, Tudzynski P, Delen, N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht, pp 163-179

    Google Scholar 

  • Siewers V, Smedsgaard J, Tudzynski P (2004) The P450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea. Appl Environ Micro- biol 70:3868-3876

    Article  CAS  Google Scholar 

  • Siewers V, Viaud M, Jimez-Teja D, Collado IG, Schulze Gronover C, Pradier J-M, Tudzynski B, Tudzynski P (2005) Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific viruence factor. Mol Plant-Microbe Interact 18:602-612

    Article  PubMed  CAS  Google Scholar 

  • Siewers V, Kokkelink L, Smedsgaard J, Tudzynski P (2006) Identification of an abscisic acid gene cluster in the grey mould Botrytis cinerea. Appl Env Microbiol 72:4619-4626

    Article  CAS  Google Scholar 

  • Siriputthaiwan P, Jauneau A, Herbert C, Garcin D, Dumas B (2005) Functional analysis of CLPT1, a Rab/GTPase required for protein secretion and pathogenesis in the plant fungal pathogen Colletotrichum lindemuthi- anum. J Cell Sci 118:323-329

    Article  PubMed  CAS  Google Scholar 

  • Solomon PS, Waters OD, Simmonds J, Cooper RM, Oliver R (2005) The Mak2 MAP kinase signal transduction pathway is required for pathogenicity in Stagonospora nodorum. Curr Genet 48:60-68

    Article  PubMed  CAS  Google Scholar 

  • Soulie MC, Piffeteau A, Choquer M, Boccara M, Vidal-Cros A (2003) Disruption of Botrytis cinerea class I chitin synthase gene Bcchs1 results in cell wall weakening and reduced virulence. Fungal Genet Biol 40:38-46

    Article  PubMed  CAS  Google Scholar 

  • Soulie MC, Perino C, Piffeteau A, Choquer M, Malfatti P, Cimerman A, Kunz C, Boccara M, Vidal-Cros A (2006) Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class III gene (Bcchs3a). Cell Microbiol 8:1310-1321

    Article  PubMed  CAS  Google Scholar 

  • Staats M, van Baarlen P, Schouten A, van Kan JAL, Bakker FT (2007) Positive selection in phytotoxic protein- encoding genes of Botrytis species. Fungal Genet Biol 44:52-63

    Article  PubMed  CAS  Google Scholar 

  • Takemoto P, Tanaka A, Scott B (2007) NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol 44:10651076

    Article  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxigen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 18:1052-1066

    Article  PubMed  CAS  Google Scholar 

  • ten Have A, Mulder W, Visser J, van Kan JA (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant-Microbe Interact 11:1009-1016

    Article  PubMed  Google Scholar 

  • ten Have A, Oude-Breuil W, Wubben JP, Visser J, van Kan JAL (2001) Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet Biol 33:97-105

    Article  PubMed  Google Scholar 

  • Tenberge KB (2004) Morphology and cellular organization in Botrytis interaction with plants. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht, pp 67-84

    Google Scholar 

  • Thomma BP, Penninckx IA, Cammue BP, Broekaert WF (2001) The complexity of diesease signaling in Arabi- dopsis. Curr Opin Immunol 13:63-68

    Article  PubMed  CAS  Google Scholar 

  • Tonukari NJ, Scott-Craig JS, Walton JD (2000) The Cochliobolus carbonum snf1 gene is required for cell wall- degrading enzyme expression and virulence on maize. Plant Cell 12:237-247

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski B, Schulze Gronover C (2004) Signaling in Botrytis cinerea. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds), Botrytis spp.: biology, pathology and control. Kluwer, Dordrecht Tudzynski P, Scheffer J (2004) Claviceps purpurea: Molecular aspects of a unique pathogenic lifestyle. Mol Plant Pathol 5:377-388

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski P, Sharon A (2003) Fungal pathogenicity genes. In: Arora DK, Khachatourians GG (eds) Fungal genomics. Applied mycology and biotechnology, vol 3. Elsevier, Amsterdam, pp 187-212

    Google Scholar 

  • Tudzynski P, Siewers V (2004) Approaches to molecular genetics and genomics of Botrytis. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht, pp 53-66

    Google Scholar 

  • Valette-Collet O, Cimerman A, Reignault P, Levis C, Boccara M (2003) Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Mol Plant-Microbe Interact 16:360-367

    Article  PubMed  CAS  Google Scholar 

  • van Baarlen P, Woltering EJ,Staats M, van Kan JAL (2007) Histochemical and genetic analysis of host and nonhost interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Mol Plant Pathol 8:41-54

    Article  Google Scholar 

  • van Kan JA (2006) Licensed to kill: the lifestyle of a necro-trophic plant pathogen. Trends Plant 11:247-253

    Article  Google Scholar 

  • van Kan JA, van't Klooster JW, Wagemakers CA, Dees DC, van der Vlugt-Bergmans CJ. (1997) Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Mol Plant-Microbe Interact 10:30-38

    Article  PubMed  Google Scholar 

  • Viaud M, Brunet-Simon A, Brygoo Y, Pradier J-M and Levis C (2003) Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Mol Microbiol 50:1451-1465

    Article  PubMed  CAS  Google Scholar 

  • Viaud M, Fillinger S, Liu W, Polepalli JS, Kunduru AR, Laroux P, Legendre L (2006) A class III kinase Acts as a novel virulance factor in Botrytis cinerea. Mol Plant- Microbe Interact 19:1042-1050

    Article  PubMed  CAS  Google Scholar 

  • Williamson B, Tudzynski B, Tudzynski P, van Kan JAL (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol (in press) Wolanin PM, Thomason PA, Stock JB (2002) Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol 3:3013.7

    Google Scholar 

  • Xu JR (2000) MAP kinases in fungal pathogens. Fungal Genet Biol 31:137-152

    Article  PubMed  CAS  Google Scholar 

  • Xu J-R, Hamer JE (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10:2696-2706

    Article  PubMed  CAS  Google Scholar 

  • Xu J-R, Peng YL, Dickman MB, SharonA (2006) The dawn of fungal pathogen genomics. Annu Rev Phytopathol 44:337-366

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Campbell M, Murphy J, Lam S,Xu JR (2000) The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Mol Plant-Microbe Interact 13:724-732

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Tudzynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tudzynski, P., Kokkelink, L. (2009). Botrytis cinerea: Molecular Aspects of a Necrotrophic Life Style. In: Deising, H.B. (eds) Plant Relationships. The Mycota, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87407-2_2

Download citation

Publish with us

Policies and ethics