Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5045))

Abstract

The Exact Geometric Computation (EGC) mode of computation has been developed over the last decade in response to the widespread problem of numerical non-robustness in geometric algorithms. Its technology has been encoded in libraries such as LEDA, CGAL and Core Library. The key feature of EGC is the necessity to decide zero in its computation. This paper addresses the problem of providing a foundation for the EGC mode of computation. This requires a theory of real computation that properly addresses the Zero Problem. The two current approaches to real computation are represented by the analytic school and algebraic school. We propose a variant of the analytic approach based on real approximation.

  • To capture the issues of representation, we begin with a reworking of van der Waerden’s idea of explicit rings and fields. We introduce explicit sets and explicit algebraic structures.

  • Explicit rings serve as the foundation for real approximation: our starting point here is not ℝ, but \(\mathbb{F}\subseteq \mathbb{R}\), an explicit ordered ring extension of ℤ that is dense in ℝ. We develop the approximability of real functions within standard Turing machine computability, and show its connection to the analytic approach.

  • Current discussions of real computation fail to address issues at the intersection of continuous and discrete computation. An appropriate computational model for this purpose is obtained by extending Schönhage’s pointer machines to support both algebraic and numerical computation.

  • Finally, we propose a synthesis wherein both the algebraic and the analytic models coexist to play complementary roles. Many fundamental questions can now be posed in this setting, including transfer theorems connecting algebraic computability with approximability.

Expansion of a talk by the same title at Dagstuhl Seminar on “Reliable Implementation of Real Number Algorithms: Theory and Practice”, Jan 7-11, 2006. This work is supported by NSF Grant No. 043086.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.: A Descartes algorithm for polynomials with bit stream coefficients. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 138–149. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  3. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the complexity of numerical analysis. In: Proc. 21st IEEE Conf. on Computational Complexity (to appear, 2006)

    Google Scholar 

  4. Beeson, M.J.: Foundations of Constructive Mathematics. Springer, Berlin (1985)

    MATH  Google Scholar 

  5. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation: A manifesto. Int. J. of Bifurcation and Chaos 6(1), 3–26 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1998)

    Google Scholar 

  7. Borodin, A., Munro, I.: The Computational Complexity of Algebraic and Numeric Problems. American Elsevier Publishing Company, Inc., New York (1975)

    MATH  Google Scholar 

  8. Brent, R.P.: Fast multiple-precision evaluation of elementary functions. J. of the ACM 23, 242–251 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brent, R.P.: Multiple-precision zero-finding methods and the complexity of elementary function evaluation. In: Traub, J.F. (ed.) Proc. Symp. on Analytic Computational Complexity, pp. 151–176. Academic Press, London (1976)

    Google Scholar 

  10. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Series of Comprehensive Studies in Mathematics, vol. 315. Springer, Berlin (1997)

    MATH  Google Scholar 

  11. Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: Exact efficient geometric computation made easy. In: Proc. 15th ACM Symp. Comp. Geom., pp. 341–450. ACM Press, New York (1999)

    Google Scholar 

  12. Chang, E.-C., Choi, S.W., Kwon, D., Park, H., Yap, C.: Shortest paths for disc obstacles is computable. Int’l. J. Comput. Geometry and Appl. 16(5-6), 567–590 (2006); Special Issue of IJCGA on Geometric Constraints. (Gao, X.S., Michelucci, D (eds.))

    Article  MATH  MathSciNet  Google Scholar 

  13. Corman, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press and McGraw-Hill Book Company, Cambridge, Massachusetts and New York (2001)

    Google Scholar 

  14. Demmel, J.: The complexity of accurate floating point computation. In: Proc. of the ICM, Beijing, vol. 3, pp. 697–706 (2002)

    Google Scholar 

  15. Demmel, J., Dumitriu, I., Holtz, O.: Toward accurate polynomial evaluation in rounded arithmetic (2005) Paper ArXiv:math.NA/0508350, download from http://lanl.arxiv.org/

  16. Du, Z., Sharma, V., Yap, C.: Amortized bounds for root isolation via Sturm sequences. In: Wang, D., Zhi, L. (eds.) Proc. Internat. Workshop on Symbolic-Numeric Computation. School of Science, Beihang University, Beijing, China, pp. 81–93 (2005); Int’l Workshop on Symbolic-Numeric Computation, Xi’an, China, July 19–21 (2005)

    Google Scholar 

  17. Fabri, A., Fogel, E., Gärtner, B., Hoffmann, M., Kettner, L., Pion, S., Teillaud, M., Veltkamp, R., Yvinec, M.: The CGAL manual, Release 3.0 (2003)

    Google Scholar 

  18. Fröhlich, A., Shepherdson, J.: Effective procedures in field theory. Philosophical Trans. Royal Soc. of London. Series A, Mathematical and Physical Sciences 248(950), 407–432 (1956)

    Article  MATH  Google Scholar 

  19. Halmos, P.R.: Naive Set Theory. Van Nostrand Reinhold Company, New York (1960)

    MATH  Google Scholar 

  20. Tucker, J.V., Zucker, J.I.: Abstract computability and algebraic specification. ACM Trans. on Computational Logic 3(2), 279–333 (2002)

    Article  MathSciNet  Google Scholar 

  21. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A Core library for robust numerical and geometric computation. In: 15th ACM Symp. Computational Geometry, pp. 351–359 (1999)

    Google Scholar 

  22. Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.: Classroom examples of robustness problems in geometric computation. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 702–713. Springer, Heidelberg (2004)

    Google Scholar 

  23. Ko, K.-I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Boston (1991)

    MATH  Google Scholar 

  24. Kreitz, C., Weihrauch, K.: Theory of representations. Theoretical Computer Science 38, 35–53 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lambov, B.: Topics in the Theory and Practice of Computable Analysis. Phd thesis, University of Aarhus, Denmark (2005)

    Google Scholar 

  26. Mal’cev, A.I.: The Metamethematics of Algebraic Systems. Collected papers: 1937–1967. North-Holland, Amsterdam (1971); Translated and edited by Wells, III, B.F

    Google Scholar 

  27. Mehlhorn, K., Schirra, S.: Exact computation with leda_real – theory and geometric applications. In: Alefeld, G., Rohn, J., Rump, S., Yamamoto, T. (eds.) Symbolic Algebraic Methods and Verification Methods, Vienna, pp. 163–172. Springer, Heidelberg (2001)

    Google Scholar 

  28. Mueller, N., Escardo, M., Zimmermann, P.: Guest editor’s introduction: Practical development of exact real number computation. J. of Logic and Algebraic Programming 64(1) (2004) (special Issue)

    Google Scholar 

  29. Müler, N.T.: Subpolynomial complexity classes of real functions and real numbers. In: Kott, L. (ed.) Proc. 13th Int’l Colloq. on Automata, Languages and Programming. LNCS, vol. 226, pp. 284–293. Springer, Berlin (1986); I cite this paper for Weihrauch’s broken arrow notation for partial functions... apparently, it is the older of the two notation from Weihrauch!

    Google Scholar 

  30. Müller, N.T.: The iRRAM: Exact arithmetic in C++. In: Blank, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  31. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Perspectives in Mathematical Logic. Springer, Berlin (1989)

    MATH  Google Scholar 

  32. Research Triangle Park (RTI). Planning Report 02-3: The economic impacts of inadequate infrastructure for software testing. Technical report, National Institute of Standards and Technology (NIST), U.S. Department of Commerce (May 2002)

    Google Scholar 

  33. Richardson, D.: How to recognize zero. J. of Symbolic Computation 24, 627–645 (1997)

    Article  MATH  Google Scholar 

  34. Richardson, D., El-Sonbaty, A.: Counterexamples to the uniformity conjecture. Comput. Geometry: Theory and Appl. 33(1 & 2), 58–64 (2006); Special Issue on Robust Geometric Algorithms and its Implementations, Yap , C., Pion, S. (eds.) (to appear)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  36. Schönhage, A.: Storage modification machines. SIAM J. Computing 9, 490–508 (1980)

    Article  MATH  Google Scholar 

  37. Spreen, D.: On some problems in computational topology. Schriften zur Theoretischen Informatik Bericht Nr.05-03, Fachberich Mathematik, Universitaet Siegen, Siegen, Germany (submitted, 2003)

    Google Scholar 

  38. van der Waerden, B.L.: Algebra, vol. 1. Frederick Ungar Publishing Co., New York (1970)

    Google Scholar 

  39. Stoltenberg-Hansen, V., Tucker, J.V.: Computable rings and fields. In: Griffor, E. (ed.) Handbook of Computability Theory. Elsevier, Amsterdam (1999)

    Google Scholar 

  40. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

    MATH  Google Scholar 

  41. Yap, C.K.: Fundamental Problems of Algorithmic Algebra. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  42. Yap, C.K.: On guaranteed accuracy computation. In: Chen, F., Wang, D. (eds.) Geometric Computation, ch. 12, pp. 322–373. World Scientific Publishing Co., Singapore (2004)

    Google Scholar 

  43. Yap, C.K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch. 41, 2nd edn., pp. 927–952. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Hertling Christoph M. Hoffmann Wolfram Luther Nathalie Revol

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yap, C. (2008). Theory of Real Computation According to EGC. In: Hertling, P., Hoffmann, C.M., Luther, W., Revol, N. (eds) Reliable Implementation of Real Number Algorithms: Theory and Practice. Lecture Notes in Computer Science, vol 5045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85521-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85521-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85520-0

  • Online ISBN: 978-3-540-85521-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics