Skip to main content

The iRRAM: Exact Arithmetic in C++

  • Conference paper
  • First Online:
Computability and Complexity in Analysis (CCA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2064))

Included in the following conference series:

Abstract

The iRRAM is a very efficient C++ package for error-free real arithmetic based on the concept of a Real-RAM. Its capabilities range from ordinary arithmetic over trigonometric functions to linear algebra even with sparse matrices. We discuss the concepts and some highlights of the implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.H. Bailey, The computation of π to 29,360,000 Decimal Digits Using Borweins Quartically Convergent Algorithm Mathematics of Computation Vol. 50 Number 181 (1988) 238–296

    Google Scholar 

  2. J.M. Borwein and P.B. Borwein, Pi and the AGM, A study in analytic number theory, Wiley, New York, 1987

    Google Scholar 

  3. H. Boehm and R. Cartwright, Exact Real Arithmetic: Formulating real numbers as functions. In T. D., editor, Research Topics in Functional Programming, 43–64 (Addison-Wesley, 1990)

    Google Scholar 

  4. L. Blum, M. Shub, and S. Smale, On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, Bulletin of the AMS 21, 1, July 1989

    Google Scholar 

  5. R.P. Brent, The complexity of multiple precision arithmetic, Proc. Seminar on Complexity of Computational Problem Solving, Queensland U. Press, Brisbane, Australia (1975) 126–165

    Google Scholar 

  6. R.P. Brent, Fast multiple precision evaluation of elementary functions, J. ACM 23 (1976) 242–251

    Article  MATH  MathSciNet  Google Scholar 

  7. R.P. Brent, A Fortran multiple precision package, ACM Trans. Math. Software 4 (1978), pp 57–70

    Article  Google Scholar 

  8. V. Brattka, Recursive characterization of computable real-valued functions and relations, Theoret. Comput. Sci. 162 (1996),47–77

    Article  MathSciNet  Google Scholar 

  9. V. Brattka and P. Hertling, Feasible Real Random Access Machines, Informatik Berichte 193-12/1995, FernUniversität Hagen

    Google Scholar 

  10. V. Brattka and P. Hertling, Continuity and Computability of Relations, Informatik Berichte 164-9/1994, FernUniversitätHagen

    Google Scholar 

  11. V. Brattka, Recursive and Computable Operations over Topological Structures, Thesis, Informatik Berichte 255-7/1999, FernUniversitätHagen

    Google Scholar 

  12. S.A. Cook and S.O. Aanderaa,On the minimum computation time of functions, Trans. Amer.Math. Soc. 142 (1969) 291–314

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Edalat and P. Potts, A new representation for exact real numbers, Proc. ofMathematical Foundations of Programming Semantics 13, Electronic notes in Theoretical Computer Science 6, Elsevier Science B.V., 1997, URL: http://www.elsevier.nl/locate/entcs/volume6.html

  14. M.J. Fischer and L.J. Stockmeyer, Fast on-line integer multiplication, J. Comput. System Scis. 9 (1974) 317–331

    MATH  MathSciNet  Google Scholar 

  15. T. Granlund, GMP 3.1.1, http://www.swox.com/gmp/

  16. P. Gowland and D. Lester, The Correctness of an Implementation of Exact Arithmetic, 4th Conference on Real Numbers and Computers, 2000, Dagstuhl, 125–140

    Google Scholar 

  17. S. Heinrich, E. Novak et al., The Inverse of the Star-Discrepancy depends linearly on the Dimension, Acta Arithmetica, to appear

    Google Scholar 

  18. R. Klatte, U. Kulisch et al., C-XSC, a C++ Class Library for Extended Scientific Computing (Springer, Berlin 1993)

    MATH  Google Scholar 

  19. K. Ko, Complexity Theory of Real Functions, (Birkhäuser, Boston 1991)

    MATH  Google Scholar 

  20. U. Kulisch, Memorandum über Computer, Arithmetik und Numerik (Universität Karlsruhe, Institut für angewandteMathematik)

    Google Scholar 

  21. V. Ménissier-Morain, Arbitrary precision real arithmetic: design and algorithms, J. Symbolic Computation, 1996, 11

    Google Scholar 

  22. N.Th. Müller, Untersuchungen zur Komplexität reeller Funktionen, Dissertation (Fern-Universität Hagen, 1988)

    Google Scholar 

  23. N.Th. Müller, Polynomial Time Computation of Taylor Series,Proc. 22 JAIIO-PANEL’ 93, Part 2, Buenos Aires, 1993, 259–281 (also available at http://www.informatik.uni-trier.de/~mueller)

  24. N.Th. Müller, Towards a real Real RAM: a Prototype using C++, (preliminary version), Second Workshop on Constructivity and Complexity in Analysis, Forschungsbericht Mathematik-Informatik, Universität Trier 96-44, Seiten 59–66 (1996) (also available at http://www.informatik.uni-trier.de/~mueller)

    Google Scholar 

  25. N.Th. Müller, Towards a real RealRAM: a Prototype using C++, Proc. 6th International Conference on Numerical Analysis, Plovdiv, 1997

    Google Scholar 

  26. N.Th. Müller, Implementing limits in an interactive RealRAM, 3rd Conference on Real Numbers and Computers, 1998, Paris, 13–26

    Google Scholar 

  27. M. Riordan, ftp://ripem.msu.edu/pub/bignum/BIGNUMS.TXT

  28. A. Schönhage, Numerik analytischer Funktionen und Komplexität, Jber. d. Dt. Math.-Verein. 92 (1990) 1–20

    MATH  Google Scholar 

  29. J.V. Tucker, J.I. Zucker, Computation by ‘While’ programs on topological partial algebras, Theoretical Computer Science 219 (1999) 379–420

    Article  MATH  MathSciNet  Google Scholar 

  30. K. Weihrauch, Computability (volume 9 of: EATCS Monographs on Theoretical Computer Science), (Springer, Berlin, 1987)

    MATH  Google Scholar 

  31. K. Weihrauch, A Simple Introduction to Computable Analysis, Informatik Berichte 171-2/1995, FernUniversitätHagen

    Google Scholar 

  32. K. Weihrauch,A Foundation for ComputableAnalysis, Proc.DMTCS’96, (Springer, Singapore, 1997) 66–89

    Google Scholar 

  33. Zi00.P. Zimmermann, MPFR: A Library for Multiprecision Floating-Point Arithmetic with Exact Rounding, 4th Conference on Real Numbers and Computers, 2000, Dagstuhl, 89–90, see also http://www.loria.fr/projets/mpfr/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller, N.T. (2001). The iRRAM: Exact Arithmetic in C++. In: Blanck, J., Brattka, V., Hertling, P. (eds) Computability and Complexity in Analysis. CCA 2000. Lecture Notes in Computer Science, vol 2064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45335-0_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-45335-0_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42197-9

  • Online ISBN: 978-3-540-45335-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics