Skip to main content

Megaplasmids in Cupriavidus Genus and Metal Resistance

  • Chapter
Microbial Megaplasmids

Part of the book series: Microbiology Monographs ((MICROMONO,volume 11))

Abstract

Megaplasmids carrying genetic determinants for the response and the resistance to heavy metals are regularly found in bacteria belonging to the genus Cupriavidus/Ralstonia and isolated from industrial biotopes rich in heavy metals. The C. metallidurans strain CH34 and its representative plasmids pMOL28 (171 kb), which carries the resistance to mercury, chromate, nickel and cobalt, and pMOL30 (234 kb), which carries the resistance to cadmium, zinc, cobalt, lead, mercury and copper, were fully annotated. The plasmid pMOL28 contains a backbone that is quite similar to the backbone of plasmid pHG1 from C. eutrophus H16 and of pRALTA from C. taiwanensis. Three putative genomic islands were discovered on pMOL28. One of them, CMGI-28a, carries heavy metal resistance genes (mer, cnr, and chr) and is flanked by IS1071 elements that have undergone further rearrangements stabilizing the island and its metal resistance determinants. The backbone of pMOL30 is related to the large plasmid pBVIE01 of Burkholderia vietnamiensis G4 with an especially high identity between the parAB genes. Plasmid pMOL30 contains two large putative genomic islands comprising most of the genes involved in the response or resistance to heavy metals: CMGI-30a with the czc, pbr, and mer genes and CMGI-30b with the sil and cop genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrére S, Cruveiller S, Dossat C, Lajus A, Marchetti M, Poinsot V, Rouy Z, Servin B, Saad M, Schenowitz C, Barbe V, Batut J, Médigue C, Masson-Boivin C (2008) Genome sequence of the β-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res doi:10.1101/gr.076448.108

    Google Scholar 

  • Bale MJ, Fry JC, Day MJ (1988) Transfer and occurrence of large mercury resistance plasmids in river epilithon.Appl Environ Microbiol54:972–978.

    CAS  PubMed  Google Scholar 

  • Bersch B, Favier A, Schanda P, van Aelst S, Vallaeys T, Covès J, Mergeay M, Wattiez R (2008) Molecular structure and metal-binding properties of the periplasmic CopK protein expressed inCupriavidus metalliduransCH34 during copper challenge.J Mol Biol380:386–403.

    Article  CAS  PubMed  Google Scholar 

  • Borremans B, Hobman JL, Provoost A, Brown NL, van Der Lelie D (2001) Cloning and functional analysis of thepbrlead resistance determinant ofRalstonia metalliduransCH34.J Bacteriol183:5651–5658.

    Article  CAS  PubMed  Google Scholar 

  • Brim H, Heyndrickx M, de Vos P, Wilmotte A, Springael D, Schlegel H, Mergeay M (1999) Amplified rDNA restriction analysis and further genotypic characterisation of metal-resistant soil bacteria and related facultative hydrogenotrophs.Syst Appl Microbiol22:258–268.

    CAS  PubMed  Google Scholar 

  • Champier L, Duarte V, Michaud-Soret I, Covès J (2004) Characterization of the MerD protein fromRalstonia metalliduransCH34: a possible role in bacterial mercury resistance by switching off the induction of themeroperon.Mol Microbiol52:1475–1485.

    Article  CAS  PubMed  Google Scholar 

  • Chen WM, Moulin L, Bontemps C, Vandamme P, Bena G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature.J Bacteriol185:7266–7272.

    Article  CAS  PubMed  Google Scholar 

  • Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001)Ralstonia taiwanensissp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient.Int J Syst Evol Microbiol51:1729–1735.

    CAS  PubMed  Google Scholar 

  • Collard JM, Provoost A, Taghavi S, Mergeay M (1993) A new type ofAlcaligenes eutrophusCH34 zinc resistance generated by mutations affecting regulation of thecnrcobalt-nickel resistance system.J Bacteriol175:779–784.

    CAS  PubMed  Google Scholar 

  • Diels L, Springael D, van der Lelie N, Top E, Mergeay M (1993) Use of DNA probes and plasmid capture in a search for new interesting environmental genes.Sci Total Environ139 – 140 : 471 – 478.

    PubMed  Google Scholar 

  • Diels L, Dong Q, van der Lelie D, Baeyens W, Mergeay M (1995a) Theczcoperon ofAlcaligenes eutrophusCH34: from resistance mechanism to the removal of heavy metals.J Ind Microbiol14:142–153.

    Article  CAS  Google Scholar 

  • Diels L, Van Roy S, Somers K, Willems I, Doyen W, Mergeay M, Springael D, Leysen R (1995b)The use of bacteria immobilized in tubular membrane reactors for heavy metal recovery and degradation of chlorinated aromatics.J Memb Sci100:249–258.

    Article  CAS  Google Scholar 

  • Diels L, Faelen M, Mergeay M, and Nies D (1985) Mercury transposons from plasmids governing multiple resistance to heavy metals inAlcaligenes eutrophusCH34.Arch Intern Physiol Bioch93:27–28.

    Article  Google Scholar 

  • Diels L, Sadouk A and Mergeay M (1989) Large plasmids governing multiple resistance to heavy metals: a genetic approach.Toxicol Environ Chem23:79–89.

    Article  CAS  Google Scholar 

  • Dong Q, Mergeay M (1994)czc/cnrefflux: a three-component chemiosmotic antiport pathway with a 12-transmembrane-helix protein.Mol Microbiol14:185–187.

    Article  CAS  PubMed  Google Scholar 

  • Dong Q, Sadouk A, van der Lelie D, Taghavi S, Ferhat A, Nuyten JM, Borremans B, Mergeay M,Toussaint A (1992) Cloning and sequencing of IS1086, anAlcaligenes eutrophusinsertion element related to IS30and IS4351.J Bacteriol174:8133–8138.

    CAS  PubMed  Google Scholar 

  • Feulner G, Gray JA, Kirschman JA, Lehner AF, Sadosky AB, Vlazny DA, Zhang J, Zhao S, Hill CW (1990) Structure of therhsAlocus fromEscherichia coliK-12 and comparison ofrhsAwith other members of therhsmultigene family.J Bacteriol172:446–456.

    CAS  Google Scholar 

  • Gerstenberg C, Friedrich B, Schlegel HG (1982) Physical evidence for plasmids in autotrophic,especially hydrogen-oxidizing bacteria.Arch Microbiol133:90–96.

    Article  CAS  Google Scholar 

  • Goris J, De Vos P, Coenye T, Hoste B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K,Vandamme P (2001) Classification of metal-resistant bacteria from industrial biotopes asRalstonia campinensissp. nov.,Ralstonia metalliduranssp. nov. andRalstonia basilensisSteinle et al. 1998 emend.Int J Syst Evol Microbiol51:1773–1782.

    CAS  PubMed  Google Scholar 

  • Grass G, Grosse C, Nies DH (2000) Regulation of thecnrcobalt and nickel resistance determinant fromRalstoniasp. strain CH34.J Bacteriol182:1390–1398.

    Article  CAS  PubMed  Google Scholar 

  • Grass G, Fricke B, Nies DH (2005) Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations.Biometals18:437–448.

    Article  CAS  PubMed  Google Scholar 

  • Grass G, Fan B, Rosen BP, Lemke K, Schlegel HG, Rensing C (2001) NreB fromAchromobacter xylosoxidans31A is a nickel-induced transporter conferring nickel resistance.J Bacteriol183:2803–2807.

    Article  CAS  PubMed  Google Scholar 

  • Grosse C, Friedrich S, Nies DH (2007) Contribution of Extracytoplasmic Function Sigma Factors to Transition Metal Homeostasis inCupriavidus metalliduransStrain CH34.J Mol Microbiol Biotechnol12:227–240.

    Article  CAS  PubMed  Google Scholar 

  • Grosse C, Anton A, Hoffmann T, Franke S, Schleuder G, Nies DH (2004) Identification of a regulatory pathway that controls the heavy-metal resistance system Czc via promoterczcNpinRalstonia metallidurans.Arch Microbiol182:109–118.

    Article  CAS  PubMed  Google Scholar 

  • Grosse C, Grass G, Anton A, Franke S, Santos AN, Lawley B, Brown NL, Nies DH (1999)Transcriptional organization of theczcheavy-metal homeostasis determinant fromAlcaligenes eutrophus.J Bacteriol181:2385–2393.

    CAS  PubMed  Google Scholar 

  • Hacker J, Hochhut B, Middendorf B, Schneider G, Buchrieser C, Gottschalk G, Dobrindt U (2004) Pathogenomics of mobile genetic elements of toxigenic bacteria.Int J Med Microbiol293:453–461.

    Article  CAS  PubMed  Google Scholar 

  • Hedges RW, Baumberg S (1973) Resistance to arsenic compounds conferred by a plasmid transmissible between strains ofEscherichia coli.J Bacteriol115:459–460.

    CAS  PubMed  Google Scholar 

  • Hill CW, Sandt CH, Vlazny DA (1994) Rhs elements ofEscherichia coli: a family of genetic composites each encoding a large mosaic protein.Mol Microbiol12:865–871.

    Article  CAS  PubMed  Google Scholar 

  • Hobman JL (2007a) MerR family transcription activators: similar designs, different specificities.Mol Microbiol63:1275–1278.

    Article  CAS  Google Scholar 

  • Hobman JL, Yamamoto K, Oshima T (2007b) Transcriptomic Responses of Bacterial Cells to Sublethal Metal Ion stress. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer Verlag, Berlin Heidelberg, pp 73–115.

    Chapter  Google Scholar 

  • Juhnke S, Peitzsch N, Hubener N, Grosse C, Nies DH (2002) New genes involved in chromate resistance inRalstonia metalliduransstrain CH34.Arch Microbiol179:15–25.

    Article  CAS  PubMed  Google Scholar 

  • Kershaw CJ, Brown NL, Constantinidou C, Patel MD, Hobman JL (2005) The expression profile ofEscherichia coliK-12 in response to minimal, optimal and excess copper concentrations.Microbiology151:1187–1198.

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Jung EJ, Im H, Lelie DV, Kim EE (2008) Expression, purification, and crystallization and preliminary X-ray crystallographic analysis of CnrX fromCupriavidus metalliduransCH34.J Microbiol Biotechnol18:43–47.

    CAS  PubMed  Google Scholar 

  • La Duc MT, Nicholson W, Kern R, Venkateswaran K (2003) Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility.Environ Microbiol5:977–985.

    Article  PubMed  Google Scholar 

  • Larbig KD, Christmann A, Johann A, Klockgether J, Hartsch T, Merkl R, Wiehlmann L, Fritz HJ,Tummler B (2002) Gene islands integrated into tRNA(Gly) genes confer genome diversity on aPseudomonas aeruginosaclone.J Bacteriol184:6665–6680.

    Article  CAS  PubMed  Google Scholar 

  • Legatzki A, Grass G, Anton A, Rensing C, Nies DH (2003) Interplay of the Czc system and two P-type ATPases in conferring metal resistance toRalstonia metallidurans.J Bacteriol185:4354–4361.

    Article  CAS  PubMed  Google Scholar 

  • Liebert CA, Hall RM, Summers AO (1999) Transposon Tn21, flagship of the floating genome.Microbiol Mol Biol Rev63:507–522.

    CAS  PubMed  Google Scholar 

  • Liesegang H, Lemke K, Siddiqui RA, Schlegel HG (1993) Characterization of the inducible nickel and cobalt resistance determinantcnrfrom pMOL28 ofAlcaligenes eutrophusCH34.J Bacteriol175:767–778.

    CAS  PubMed  Google Scholar 

  • Lonetto MA, Brown KL, Rudd KE, Buttner MJ (1994) Analysis of theStreptomyces coelicolor sigEgene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions.Proc Natl Acad Sci USA91:7573–7577.

    Article  CAS  PubMed  Google Scholar 

  • Mergeay M (2000) Bacteria adapted to industrial biotopes: the metal resistantRalstonia. In:Hengge-Aronis G. Storz and R. Hengge-Aronis (eds) “Bacterial Stress Responses”. ASM Press, Washington D.C. USA, Chap.26 pp., 403–414.

    Google Scholar 

  • Mergeay M, Houba C, Gerits J (1978) Extrachromosomal inheritance controlling resistance to cadmium, cobalt, copper and zinc ions: evidence from curing in aPseudomonas.Arch Int Physiol Biochim86:440–442.

    CAS  PubMed  Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985)Alcaligenes eutrophusCH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals.J Bacteriol162:328–334.

    CAS  PubMed  Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003)Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes.FEMS Microbiol Rev27:385–410.

    Article  CAS  PubMed  Google Scholar 

  • Mobley HL, Chen CM, Silver S, Rosen BP (1983) Cloning and expression of R-factor mediated arsenate resistance inEscherichia coli.Mol Gen Genet191:421–426.

    Article  CAS  PubMed  Google Scholar 

  • Monchy S, Vallaeys T, Bossus A, Mergeay M (2006a) Metal efflux P1-ATPase genes ofCupriavidus metalliduransCH34: a transcriptomic approach.Intern J Environ Anal Chem86:677–692.

    Article  CAS  Google Scholar 

  • Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007)Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189:7417–7425.

    Article  CAS  PubMed  Google Scholar 

  • Monchy S, Benotmane MA, Wattiez R, van Aelst S, Auquier V, Borremans B, Mergeay M,Taghavi S, van der Lelie D, Vallaeys T (2006b) Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152:1765–1776.

    Article  CAS  Google Scholar 

  • Nakahara H, Ishikawa T, Sarai Y, Kondo I, Kozukue H, Silver S (1977) Linkage of mercury,cadmium, and arsenate and drug resistance in clinical isolates of Pseudomonas aeruginosa. Appl Environ Microbiol 33:975–976.

    CAS  PubMed  Google Scholar 

  • Ni'Bhriain NN, Silver S, Foster TJ (1983) Tn5 insertion mutations in the mercuric ion resistance genes derived from plasmid R100. J Bacteriol 155:690–703.

    PubMed  Google Scholar 

  • Nies A, Nies DH, Silver S (1989a) Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus. J Bacteriol 171:5065–5070.

    CAS  Google Scholar 

  • Nies A, Nies DH, Silver S (1990b) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J Biol Chem 265:5648–5653.

    CAS  Google Scholar 

  • Nies D, Mergeay M, Friedrich B, Schlegel HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169:4865–4868.

    CAS  PubMed  Google Scholar 

  • Nies DH (1992) CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus. J Bacteriol 174:8102–8110.

    CAS  PubMed  Google Scholar 

  • Nies DH (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 177:2707–2712.

    CAS  PubMed  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339.

    Article  CAS  PubMed  Google Scholar 

  • Nies DH, Silver S (1989) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J Bacteriol 171:896–900.

    CAS  PubMed  Google Scholar 

  • Nies DH, Nies A, Chu L, Silver S (1989b) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86:7351–7355.

    Article  CAS  Google Scholar 

  • Nies DH, Koch S, Wachi S, Peitzsch N, Saier MH, Jr. (1998) CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate antiporters. J Bacteriol 180:5799–5802.

    CAS  PubMed  Google Scholar 

  • Nies DH, Rehbein G, Hoffmann T, Baumann C, Grosse C (2006) Paralogs of genes encoding metal resistance proteins in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 11:82–93.

    Article  CAS  PubMed  Google Scholar 

  • Noel-Georis I, Vallaeys T, Chauvaux R, Monchy S, Falmagne P, Mergeay M, Wattiez R (2004) Global analysis of the Ralstonia metallidurans proteome: prelude for the large-scale study of heavy metal response. Proteomics 4:151–179.

    Article  CAS  PubMed  Google Scholar 

  • Novick RP, Roth C (1968) Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J Bacteriol 95:1335–1342.

    CAS  PubMed  Google Scholar 

  • O'Sullivan LA, Weightman AJ, Jones TH, Marchbank AM, Tiedje JM, Mahenthiralingam E (2007) Identifying the genetic basis of ecologically and biotechnologically useful functions of the bacterium Burkholderia vietnamiensis. Environ Microbiol 9:1017–1034.

    Article  PubMed  Google Scholar 

  • Peitzsch N, Eberz G, Nies DH (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64:453–458.

    CAS  PubMed  Google Scholar 

  • Permina EA, Kazakov AE, Kalinina OV, Gelfand MS (2006) Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC Microbiol 6:49.

    Article  CAS  PubMed  Google Scholar 

  • Peyru G,Wexler LF, Novick RP(1969) Naturally occurringpenicillinase plasmidsinStaphylococcus aureus. J Bacteriol 98:215–221.

    CAS  PubMed  Google Scholar 

  • Rensing C, Sun Y, Mitra B, Rosen BP (1998) Pb(II)-translocating P-type ATPases. J Biol Chem 273:32614–32617.

    Article  CAS  PubMed  Google Scholar 

  • Rossy E, Champier L, Bersch B, Brutscher B, Blackledge M, Covès J (2004) Biophysical characterization of the MerP-like amino-terminal extension of the mercuric reductase from Ralstonia metallidurans CH34. J Biol Inorg Chem 9:49–58.

    Article  CAS  PubMed  Google Scholar 

  • Sadouk A, Mergeay M (1993) Chromosome mapping in Alcaligenes eutrophus CH34. Mol Gen Genet 240:181–187.

    Article  CAS  PubMed  Google Scholar 

  • Saier MH, Jr., Tam R, Reizer A, Reizer J (1994) Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 11:841–847.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt T, Schlegel HG (1994) Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol 176:7045–7054.

    CAS  PubMed  Google Scholar 

  • Schmidt T, Stoppel RD, Schlegel HG (1991) High-Level Nickel Resistance in Alcaligenes xylos-oxydans 31A and Alcaligenes eutrophus KTO2. Appl Environ Microbiol 57:3301–3309.

    CAS  PubMed  Google Scholar 

  • Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G (2003) Complete nucle-otide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis. J Mol Biol 332:369–383.

    Article  CAS  PubMed  Google Scholar 

  • Sendra V, Cannella D, Bersch B, Fieschi F, Menage S, Lascoux D, Covès J (2006) CopH from Cupriavidus metallidurans CH34. A novel periplasmic copper-binding protein. Biochemistry 45:5557–5566.

    Article  CAS  PubMed  Google Scholar 

  • Serre L, Rossy E, Pebay-Peyroula E, Cohen-Addad C, Covès J (2004) Crystal structure of the oxidized form of the periplasmic mercury-binding protein MerP from Ralstonia metallidurans CH34. J Mol Biol 339:161–171.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui RA, Schlegel HG, Meyer M (1988) Inducible and constitutive expression of pMOL28-encoded nickel resistance in Alcaligenes eutrophus N9A. J Bacteriol 170:4188–4193.

    CAS  PubMed  Google Scholar 

  • Siddiqui RA, Benthin K, Schlegel HG (1989) Cloning of pMOL28-encoded nickel resistance genes and expression of the genes in Alcaligenes eutrophus and Pseudomonas spp. J Bacteriol 171:5071–5078.

    CAS  PubMed  Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metal ions--a review. Gene 179:9–19.

    Article  CAS  PubMed  Google Scholar 

  • Silver S, Misra TK (1984) Bacterial transformations of and resistances to heavy metals. Basic Life Sci 28:23–46.

    CAS  PubMed  Google Scholar 

  • Smith K, Novick RP (1972) Genetic studies on plasmid-linked cadmium resistance in Staphylococcus aureus. J Bacteriol 112:761–772.

    CAS  PubMed  Google Scholar 

  • Summers AO, Silver S (1972) Mercury resistance in a plasmid-bearing strain of Escherichia coli. J Bacteriol 112:1228–1236.

    CAS  PubMed  Google Scholar 

  • Summers AO, Silver S (1978) Microbial transformations of metals. Annu Rev Microbiol 32:637–672.

    Article  CAS  PubMed  Google Scholar 

  • Taghavi S, Mergeay M, van der Lelie D (1997) Genetic and physical maps of the Alcaligenes eutrophus CH34 megaplasmid pMOL28 and its derivative pMOL50 obtained after temperature-induced mutagenesis and mortality. Plasmid 37:22–34.

    Article  CAS  PubMed  Google Scholar 

  • Tetaz TJ, Luke RK (1983) Plasmid-controlled resistance to copper in Escherichia coli. J Bacteriol 154:1263–1268.

    CAS  PubMed  Google Scholar 

  • Tibazarwa C, Wuertz S, Mergeay M, Wyns L, van Der Lelie D (2000) Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J Bacteriol 182:1399–1409.

    Article  CAS  PubMed  Google Scholar 

  • Toussaint A, Merlin C, Monchy S, Benotmane MA, Leplae R, Mergeay M, Springael D (2003) The biphenyl- and 4-chlorobiphenyl-catabolic transposon Tn 4371, a member of a new family of genomic islands related to IncP and Ti plasmids. Appl Environ Microbiol 69:4837–4845.

    Article  CAS  PubMed  Google Scholar 

  • Trajanovska S, Britz ML, Bhave M (1997) Detection of heavy metal ion resistance genes in gram-positive and gram-negative bacteria isolated from a lead-contaminated site. Biodegradation 8:113–124.

    Article  CAS  PubMed  Google Scholar 

  • Tricot C, van Aelst S, Wattiez R, Mergeay M, Stalon V, Wouters J (2005) Overexpression, purification, crystallization and crystallographic analysis of CopK of Cupriavidus metallidurans. Acta Crystallographica Section F 61:825–827.

    Google Scholar 

  • Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A, Pascal G, Scarpelli C, Médigue C (2006) MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34:53–65.

    Article  CAS  PubMed  Google Scholar 

  • van der Lelie D, Schwuchow T, Schwidetzky U, Wuertz S, Baeyens W, Mergeay M, Nies DH (1997) Two-component regulatory system involved in transcriptional control of heavy-metal homoeostasis in Alcaligenes eutrophus. Mol Microbiol 23:493–503.

    Article  PubMed  Google Scholar 

  • Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus : a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289.

    Article  PubMed  Google Scholar 

  • Vaneechoutte M, Kampfer P, De Baere T, Falsen E, Verschraegen G (2004) Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol 54:317–327.

    Article  PubMed  Google Scholar 

  • Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiol Immunol 39:897–904.

    CAS  Google Scholar 

  • Zoropogui A, Gambarelli S, Covès J (2008) CzcE from Cupriavidus metallidurans CH34 is a copper-binding protein. Biochem Biophys Res Commun 365:735–739.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant of ESA (European Space Agency) and Belgian Scientific Policy via the MISSEX project. The genome of C. metallidurans was sequenced by the Joint Genome Institute. Thanks are due to Claudine Medigue and the team of the MAGE Genoscope annotation platform for help and precious advice. We are also grateful to Daniel van der Lelie for comments and suggestions and to Pieter Monsieurs for statistic reassessment of transcriptomic data. The technical assistance of Ann Provoost and Albert Bossus is gratefully acknowledged.

The first author is deeply grateful to Ed Schwartz for his comprehension and patience in difficult circumstances.

This work is dedicated to the memory of Larissa Hendrickx (†3/3/2008) and of Jozef Gerits († 24/3/2008).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mergeay, M., Monchy, S., Janssen, P., Houdt, R.V., Leys, N. (2009). Megaplasmids in Cupriavidus Genus and Metal Resistance. In: Schwartz, E. (eds) Microbial Megaplasmids. Microbiology Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85467-8_10

Download citation

Publish with us

Policies and ethics