Skip to main content

pH Regulated Anion Permeability of Aquaporin-6

  • Chapter
Aquaporins

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 190))

The kidney is a model organ for transport physiology (Nielsen 1996). AQPs are well-characterized in mammalian kidneys, where they facilitate transep-ithelial water reabsorption. Most renal AQPs are expressed either in proximal tubule cells or in collecting duct principal cells, which are known as sites for water reab-sorption. AQP1 is present in both apical and basolateral membranes of proximal tubules, and in descending limbs of Henle's loop where 70% of filtrated water is isoosmotically reabsorbed (King and Agre 1996). AQP2 is expressed in principal cells of the collecting duct; in response to vasopressin, AQP2 translocates from in-tracellular vesicles to the apical plasma membranes, thereby increasing water permeability to concentrate urine (Nielsen et al. 1993, 1995; Knepper 1997; Schrier 2006). AQP3 and AQP4 reside in the basolateral membranes of collecting duct principal cells, where they may provide the exit pathways for urine. AQP7, AQP8, and AQP11 are also present in the proximal tubules (Nielsen et al. 1998).

A rat cDNA clone encoding AQP6 was isolated by PCR-based homologous cloning from a rat kidney cDNA library (Ma et al. 1993; Yasui et al. 1999). AQP6 has high sequence homology to AQP0, AQP2, and AQP5. A human AQP6 was also cloned (Ma et al. 1996). Interestingly, the genes encoding AQP2, AQP5, and AQP6 are mapped to chromosome band 12q13 as a family gene cluster at this locus (Ma et al. 1997). Nevertheless, AQP6 is distinct from AQP0, AQP2, and AQP5 in terms of function. Among the renal aquaporins mentioned above, AQP6 has a unique distribution and a distinct function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agre P, King LS, Yasui M et al. (2002) Aquaporin water channels — from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  PubMed  CAS  Google Scholar 

  • Engel A, Fujiyoshi Y, Agre P (2000) The importance of aquaporin water channel protein structures. EMBO J 19:800–806

    Article  PubMed  CAS  Google Scholar 

  • Hazama A, Kozono D, Guggino WB et al. (2002) Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+activation. J Biol Chem 277:29224–29230

    Article  PubMed  CAS  Google Scholar 

  • Holm LM, Klaerke DA, Zeuthen T (2004) Aquaporin 6 is permeable to glycerol and urea. Pflugers Arch 448:181–186

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Beitz E, Kozono D et al. (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 277:39873– 39879

    Article  PubMed  CAS  Google Scholar 

  • King L S, Agre P (1996) Pathophysiology of the aquaporin water channels. Annu Rev Physiol 58:619–648

    Article  PubMed  CAS  Google Scholar 

  • Knepper M A (1997) Molecular physiology of urinary concentrating mechanism: regulation of aquaporin water channels by vasopressin. Am J Physiol 272:F3–F12

    PubMed  CAS  Google Scholar 

  • Kozono D, Yasui M, King L S et al. (2002) Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. J Clin Invest 109:1395–1399

    PubMed  CAS  Google Scholar 

  • Liu K, Kozono D, Kato Y et al. (2005) Conversion of aquaporin 6 from an anion channel to a water-selective channel by a single amino acid substitution. Proc Natl Acad Sci U S A 102:2192–2197

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Frigeri A, Skach W et al. (1993) Cloning of a novel rat kidney cDNA homologous to CHIP28 and WCH-CD water channels. Biochem Biophys Res Commun 197:654–659

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Yang B, Kuo W L et al. (1996) cDNA cloning and gene structure of a novel water channel expressed exclusively in human kidney: evidence for a gene cluster of aquaporins at chromosome locus 12q13. Genomics 35:543–550

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Yang B, Umenishi F et al. (1997) Closely spaced tandem arrangement of AQP2, AQP5, and AQP6 genes in a 27-kilobase segment at chromosome locus 12q13. Genomics 43:387–389

    Article  PubMed  CAS  Google Scholar 

  • Marples D, Christensen S, Christensen E I et al. (1995) Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest 95:1838–1845

    Article  PubMed  CAS  Google Scholar 

  • Matsuki-Fukushima M, Hashimoto S, Shimono M et al. (2008) Presence and localization of aquaporin-6 in rat parotid acinar cells. Cell Tissue Res 332:73–80

    Article  PubMed  CAS  Google Scholar 

  • Nagase H, Agren J, Saito A et al. (2007) Molecular cloning and characterization of mouse aqua-porin 6. Biochem Biophys Res Commun 352:12–16

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S (1996) Aquaporin water channels in the kidney: localization and regulation. Perit Dial Int 16(Suppl. 1):S25–S27

    PubMed  Google Scholar 

  • Nielsen S, Chou C L, Marples D et al. (1995) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A 92:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, DiGiovanni S R, Christensen E I et al. (1993) Cellular and subcellular immunolocaliza-tion of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A 90:11663– 11667

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, Fror J, Knepper M A (1998) Renal aquaporins: key roles in water balance and water balance disorders. Curr Opin Nephrol Hypertens 7:509–516

    PubMed  CAS  Google Scholar 

  • Ohshiro K, Yaoita E, Yoshida Y et al. (2001) Expression and immunolocalization of AQP6 in intercalated cells of the rat kidney collecting duct. Arch Histol Cytol 64:329–338

    Article  PubMed  CAS  Google Scholar 

  • Pohl P (2004) Combined transport of water and ions through membrane channels. Biol Chem 385:921–926

    Article  PubMed  CAS  Google Scholar 

  • Promeneur D, Kwon T H, Yasui M et al. (2000) Regulation of AQP6 mRNA and protein expression in rats in response to altered acid-base or water balance. Am J Physiol Renal Physiol 279:F1014–F1026

    PubMed  CAS  Google Scholar 

  • Sasaki Y, Tsubota K, Kawedia J D et al. (2007) The difference of aquaporin 5 distribution in acinar and ductal cells in lacrimal and parotid glands. Curr Eye Res 32:923–929

    Article  PubMed  CAS  Google Scholar 

  • Schrier R W (2006) Body water homeostasis: clinical disorders of urinary dilution and concentration. J Am Soc Nephrol 17:1820–1832

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Verkman A S (2001) Aquaporin-5 dependent fluid secretion in airway submucosal glands. J Biol Chem 276:41288–41292

    Article  PubMed  CAS  Google Scholar 

  • Warshel A (2005) Inverting the selectivity of aquaporin 6: gating versus direct electrostatic interaction. Proc Natl Acad Sci U S A 102:1813–1814

    Article  PubMed  CAS  Google Scholar 

  • Yasui M, Hazama A, Kwon T H et al. (1999a) Rapid gating and anion permeability of an intracel-lular aquaporin. Nature 402:184–187

    Article  CAS  Google Scholar 

  • Yasui M, Kwon T H, Knepper M A et al. (1999b) Aquaporin-6: an intracellular vesicle water channel protein in renal epithelia. Proc Natl Acad Sci U S A 96:5808–5813

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Yasui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yasui, M. (2009). pH Regulated Anion Permeability of Aquaporin-6. In: Beitz, E. (eds) Aquaporins. Handbook of Experimental Pharmacology, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79885-9_15

Download citation

Publish with us

Policies and ethics