Skip to main content

Anti-Influenza Drugs: The Development of Sialidase Inhibitors

  • Chapter
Antiviral Strategies

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 189))

Viruses, particularly those that are harmful to humans, are the ‘silent terrorists’ of the twenty-first century. Well over four million humans die per annum as a result of viral infections alone. The scourge of influenza virus has plagued mankind throughout the ages. The fact that new viral strains emerge on a regular basis, particularly out of Asia, establishes a continual socio-economic threat to mankind. The arrival of the highly pathogenic avian influenza H5N1 heightened the threat of a potential human pandemic to the point where many countries have put in place ‘preparedness plans’ to defend against such an outcome. The discovery of the first designer influenza virus sialidase inhibitor and anti-influenza drug RelenzaTM, and subsequently TamifluTM, has now inspired a number of continuing efforts towards the discovery of next generation anti-influenza drugs. Such drugs may act as ‘first-line-of-defence’ against the spread of influenza infection and buy time for necessary vaccine development particularly in a human pandemic setting. Furthermore, the fact that influenza virus can develop resistance to therapeutics makes these continuing efforts extremely important.

An overview of the role of the virus-associated glycoprotein sialidase (neuraminidase) and some of the most recent developments towards the discovery of anti-influenza drugs based on the inhibition of influenza virus sialidase is provided in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abed Y, Nehmé B, Baz M, Boivin G (2008) Activity of the neuraminidase inhibitor A-315675 against oseltamivir-resistant influenza neuraminidases of N1 and N2 subtypes. Antiviral Res 77:163–166

    Article  PubMed  CAS  Google Scholar 

  • Achyuthan KE, Achyuthan AM (2001) Comparative enzymology, biochemistry and pathophysiology of human exo-alpha-sialidases (neuraminidases). Compar Biochem Physiol B: Biochem Mol Biol 129:29–64

    Article  CAS  Google Scholar 

  • Air GM, Laver WG (1989) The neuraminidase of influenza virus. Proteins 6:341–356

    Article  PubMed  CAS  Google Scholar 

  • Amaro RE, Minh DDL, Cheng LS, Lindstrom WM Jr, Olson AJ, Lin J-H, Li WW, McCammon JA (2007) Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. J Am Chem Soc 129:7764–7765

    Article  PubMed  CAS  Google Scholar 

  • Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, Alzari PM (2004) Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure 12:775–784

    Article  PubMed  CAS  Google Scholar 

  • Andrews DM, Cherry PC, Humber DC, Jones PS, Keeling SP, Martin PF, Shaw CD, Swanson S (1999) Synthesis and influenza virus sialidase inhibitory activity of analogues of 4-guanidino-Neu5Ac2en (Zanamivir) modified in the glycerol side-chain. Eur J Med Chem 34:563–574

    PubMed  CAS  Google Scholar 

  • Babu YS, Chand P, Bantia S, Kotian P, Dehghani A, El-Kattan Y, Lin TH, Hutchison TL, Elliott AJ, Parker CD, Ananth SL, Horn LL, Laver GW, Montgomery JA (2000) BCX-1812 (RWJ-270201): discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J Med Chem 43:3482–3486

    Article  PubMed  CAS  Google Scholar 

  • Baker AT, Varghese JN, Laver WG, Air GM, Colman PM (1987) Three-dimensional structure of neuraminidase of subtype N9 from an avian influenza virus. Proteins 2:111–117

    Article  PubMed  CAS  Google Scholar 

  • Bamford MJ (1995) Neuraminidase inhibitors as potential anti-influenza drugs. J Enzyme Inhib 10:1–16

    Article  CAS  Google Scholar 

  • Bantia S, Parker CD, Ananth SL, Horn LL, Andries K, Chand P, Kotian PL, Dehghani A, El Kattan Y, Lin T, Hutchison TL, Montgomery JA, Kellog DL, Babu YS (2001) Comparison of the anti-influenza virus activity of RWJ-270201 with those of oseltamivir and zanamivir. Antimicrob Agents Chemother 45:1162–1167

    Article  PubMed  CAS  Google Scholar 

  • Bantia S, Arnold CS, Parker CD, Upshaw R, Chand P (2006) Anti-influenza virus activity of peramivir in mice with single intramuscular injection. Antiviral Res 69:39–45

    Article  PubMed  CAS  Google Scholar 

  • Barroso L, Treanor J, Gubareva L, Hayden FG (2005) Efficacy and tolerability of the oral neuraminidase inhibitor peramivir in experimental human influenza: randomized, controlled trials for prophylaxis and treatment. Antiviral Ther 10:901–910

    CAS  Google Scholar 

  • Beigel JH, Farrar J, Han AM, Hayden FG, Hyer R, de Jong MD, Lochindarat S, Nguyen TKT, Nguyen TH, Tran TH, Nicoll A, Touch S, Yuen K-Y (2005) Avian influenza A (H5N1) infection in humans. N Engl J Med 353:1374–1385

    Article  PubMed  Google Scholar 

  • Blick TJ, Tiong T, Sahasrabudhe A, Varghese JN, Colman PM, Hart GJ, Bethell RC, McKimm-Breschkin JL (1995) Generation and characterization of an influenza virus neuraminidase variant with decreased sensitivity to the neuraminidase-specific inhibitor 4-guanidino-Neu5Ac2en. Virology 214:475–484

    Article  PubMed  CAS  Google Scholar 

  • Bossart-Whitaker P, Carson M, Babu YS, Smith CD, Laver WG, Air GM (1993) Three-dimensional structure of influenza A N9 neuraminidase and its complex with the inhibitor 2-deoxy 2,3-dehydro-N-acetyl neuraminic acid. J Mol Biol 232:1069–1083

    Article  PubMed  CAS  Google Scholar 

  • Burmeister WP, Ruigrok RW, Cusack S (1992) The 2.2 Å resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. Embo J 11:49–56

    PubMed  CAS  Google Scholar 

  • Burmeister WP, Henrissat B, Bosso C, Cusack S, Ruigrok RW (1993) Influenza B virus neuraminidase can synthesize its own inhibitor. Structure 1:19–26

    Article  PubMed  CAS  Google Scholar 

  • Calfee DP, Hayden FG (1998) New approaches to influenza chemotherapy: neuraminidase inhibitors. Drugs 56:537–553

    Article  PubMed  CAS  Google Scholar 

  • Calfee DP, Peng AW, Cass LM, Lobo M, Hayden FG (1999) Safety and efficacy of intravenous zanamivir in preventing experimental human influenza A virus infection. Antimicrob Agents Chemother 43:1616–1620

    PubMed  CAS  Google Scholar 

  • Carter MJ (2007) A rationale for using steroids in the treatment of severe cases of H5N1 avian influenza. J Med Microbiol 56:875–883

    Article  PubMed  CAS  Google Scholar 

  • Chan T-H, Xin Y-C, von Itzstein M (1997) Synthesis of phosphonic acid analogs of sialic acids (Neu5Ac and KDN) as potential sialidase inhibitors. J Org Chem 62:3500–3504

    Article  CAS  Google Scholar 

  • Chand P, Kotian PL, Dehghani A, El-Kattan Y, Lin T-H, Hutchison TL, Babu YS, Bantia S, Elliott AJ, Montgomery JA (2001) Systematic structure-based design and stereoselective synthesis of novel multisubstituted cyclopentane derivatives with potent antiinfluenza activity. J Med Chem 44:4379–4392

    Article  PubMed  CAS  Google Scholar 

  • Chand P, Babu YS, Bantia S, Rowland S, Dehghani A, Kotian PL, Hutchison TL, Ali S, Brouillette W, El-Kattan Y, Lin T-H (2004) Syntheses and neuraminidase inhibitory activity of multisubstituted cyclopentane amide derivatives. J Med Chem 47:1919–1929

    Article  PubMed  CAS  Google Scholar 

  • Chand P, Bantia S, Kotian PL, El-Kattan Y, Lin T-H, Babu YS (2005a) Comparison of the antiinfluenza virus activity of cyclopentane derivatives with oseltamivir and zanamivir in vivo. Bioorg Med Chem 13:4071–4077

    Article  CAS  Google Scholar 

  • Chand P, Kotian PL, Morris PE, Bantia S, Walsh DA, Babu YS (2005b) Synthesis and inhibitory activity of benzoic acid and pyridine derivatives on influenza neuraminidase. Bioorg Med Chem 13:2665–2678

    Article  CAS  Google Scholar 

  • Chavas LMG, Tringali C, Fusi P, Venerando B, Tettamanti G, Kato R, Monti E, Wakatsuki S (2005) Crystal structure of the human cytosolic sialidase Neu2. Evidence for the dynamic nature of substrate recognition. J Biol Chem 280:469–475

    PubMed  CAS  Google Scholar 

  • Chong AK, Pegg MS, Taylor NR, von Itzstein M (1992) Evidence for a sialosyl cation transitionstate complex in the reaction of sialidase from influenza virus. Eur J Biochem 207:335–343

    Article  PubMed  CAS  Google Scholar 

  • Cinatl J Jr, Michaelis M, Doerr HW (2007a) The threat of avian influenza A (H5N1). III. Antiviral therapy. Med Microbiol Immunol 196:203–212

    Article  CAS  Google Scholar 

  • Cinatl J Jr, Michaelis M, Doerr HW (2007b) The threat of avian influenza A (H5N1). IV. Development of vaccines. Med Microbiol Immunol 196:213–225

    Article  CAS  Google Scholar 

  • Colman PM (1994) Influenza virus neuraminidase: structure, antibodies, and inhibitors. Protein Sci 3:1687–1696

    Article  PubMed  CAS  Google Scholar 

  • Colman PM, Ward CW (1985) Structure and diversity of influenza virus neuraminidase. Curr Top Microbiol Immunol 114:177–255

    PubMed  CAS  Google Scholar 

  • Colman PM, Varghese JN, Laver WG (1983) Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303:41–44

    Article  PubMed  CAS  Google Scholar 

  • Corfield AP, Schauer R (1982) Metabolism of sialic acids. In: Schauer R (ed) Sialic acids — Chemistry, metabolism and function. Springer, Wien, pp 195–261

    Google Scholar 

  • Corfield AP, Higa H, Paulson JC, Schauer R (1983) The specificity of viral and bacterial sialidases for alpha(2–3)- and alpha(2–6)-linked sialic acids in glycoproteins. Biochim Biophys Acta 744:121–126

    PubMed  CAS  Google Scholar 

  • Couceiro JN, Paulson JC, Baum LG (1993) Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res 29:155–165

    Article  PubMed  CAS  Google Scholar 

  • De Clercq E, Neyts J (2007) Avian influenza A (H5N1) infection: targets and strategies for chemotherapeutic intervention. Trends Pharmacol Sci 28:280–285

    Article  PubMed  CAS  Google Scholar 

  • de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJD, Chau TNB, Hoang DM, Nguyen VVC, Khanh TH, Dong VC, Qui PT, Van Cam B, Ha DQ, Guan Y, Peiris JSM, Chinh NT, Hien TT, Farrar J (2006) Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nature Med 12:1203–1207

    Article  PubMed  CAS  Google Scholar 

  • Doucette KE, Aoki FY (2001) Oseltamivir: a clinical and pharmacological perspective. Expert Opin Pharmacother 2:1671–1683

    Article  PubMed  CAS  Google Scholar 

  • Douglas RGJ (1990) Drug therapy, prophylaxis and treament of influenza. N Engl J Med 322:443–450

    PubMed  Google Scholar 

  • Edmond JD, Johnston RG, Kidd D, Rylance HJ, Sommerville RG (1966) The inhibition of neuraminidase and antiviral action. Br J Pharmac Chemother 27:415–426

    CAS  Google Scholar 

  • Eisenberg EJ, Bidgood A, Cundy KC (1997) Penetration of GS4071, a novel influenza neuraminidase inhibitor, into rat bronchoalveolar lining fluid following oral administration of the prodrug GS4104. Antimicrob Agents Chemother 41:1949–1952

    PubMed  CAS  Google Scholar 

  • El Ashry ESH, Rashed N, Shobier AHS (2000) Glycosidase inhibitors and their chemotherapeutic value, part 2. Pharmazie 55:331–348

    CAS  Google Scholar 

  • Ferraris O, Kessler N, Lina B (2005) Sensitivity of influenza viruses to zanamivir and oseltamivir: a study performed on viruses circulating in France prior to the introduction of neuraminidase inhibitors in clinical practice. Antiviral Res 68:43–48

    Article  PubMed  CAS  Google Scholar 

  • Fleming DM (2003) Zanamivir in the treatment of influenza. Expert Opin Pharmacother 4:799–805

    Article  PubMed  Google Scholar 

  • Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk A (1958) Neuraminidase; its substrate and mode of action. Adv Enzymol 20:135–146

    CAS  Google Scholar 

  • Govorkova EA, Leneva IA, Goloubeva OG, Bush K, Webster RG (2001) Comparison of efficacies of RWJ-270201, zanamivir, and oseltamivir against H5N1, H9N2, and other avian influenza viruses. Antimicrob Agents Chemother 45:2723–2732

    Article  PubMed  CAS  Google Scholar 

  • Govorkova EA, Fang H-B, Tan M, Webster RG (2004) Neuraminidase inhibitor-rimantadine combinations exert additive and synergistic anti-influenza virus effects in MDCK cells. Antimicrob Agents Chemother 48:4855–4863

    Article  PubMed  CAS  Google Scholar 

  • Gubareva LV (2004) Molecular mechanisms of influenza virus resistance to neuraminidase inhibitors. Virus Res 103:199–203

    Article  PubMed  CAS  Google Scholar 

  • Gubareva LV, Robinson MJ, Bethell RC, Webster RG (1997) Catalytic and framework mutations in the neuraminidase active site of influenza viruses that are resistant to 4-guanidino-Neu5Ac2en. J Virol 71:3385–3390

    PubMed  CAS  Google Scholar 

  • Gubareva LV, Matrosovich MN, Brenner MK, Bethell RC, Webster RG (1998) Evidence for zanamivir resistance in an immunocompromised child infected with influenza B virus. J Infect Dis 178:1257–1262

    Article  PubMed  CAS  Google Scholar 

  • Gubareva LV, Kaiser L, Matrosovich MN, Soo-Hoo Y, Hayden FG (2001) Selection of influenza virus mutants in experimentally infected volunteers treated with oseltamivir. J Infect Dis 183:523–531

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara T, Kijima-Suda I, Ido T, Ohrui H, Tomita K (1994) Inhibition of bacterial and viral sialidases by 3-fluoro-N-acetylneuraminic acid. Carbohydr Res 263:167–172

    Article  PubMed  CAS  Google Scholar 

  • Haskell TH, Peterson FE, Watson D, Plessas NR, Culbertson T (1970) Neuraminidase inhibition and viral chemotherapy. J Med Chem 13:697–704

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama S, Sugaya N, Ito M, Yamazaki M, Ichikawa M, Kimura K, Kiso M, Shimizu H, Kawakami C, Koike K, Mitamura K, Kawaoka Y (2007) Emergence of influenza B viruses with reduced sensitivity to neuraminidase inhibitors. JAMA 297:1435–1442

    Article  PubMed  CAS  Google Scholar 

  • Hay AJ (1992) The action of adamantanamines against influenza A viruses: inhibition of the M2 ion channel protein. Semin Virol 3:21–30

    CAS  Google Scholar 

  • Hay AJ, Thompson CA, Geraghty A, Hayhurst S, Grambas S, Bennett MS (1993) The role of the M2 protein in influenza virus infection. In: Hannoun C (ed) Options for the control of influenza virus, vol II. Excerpta Medica, Amsterdam, pp 281–288

    Google Scholar 

  • He G, Massarella J, Ward P (1999) Clinical pharmacokinetics of the prodrug oseltamivir and its active metabolite Ro 64–0802. Clin Pharmacokinet 37:471–484

    Article  PubMed  CAS  Google Scholar 

  • Herrler G, Hausmann J, Klenk H-D (1995) Sialic acid as receptor determinant of ortho- and paramyxoviruses. In: Rosenberg A (ed) Biology of the sialic acids. Plenum, NY, pp 315–336

    Google Scholar 

  • Holzer CT, von Itzstein M, Jin B, Pegg MS, Stewart WP, Wu WY (1993) Inhibition of sialidases from viral, bacterial and mammalian sources by analogues of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid modified at the C-4 position. Glycoconj J 10:40–44

    Article  PubMed  CAS  Google Scholar 

  • Honda T, Masuda T, Yoshida S, Arai M, Kaneko S, Yamashita M (2002a) Synthesis and anti-Influenza virus activity of 7-O-Alkylated derivatives related to zanamivir. Bioorg Med Chem Lett 12:1925–1928

    Article  CAS  Google Scholar 

  • Honda T, Masuda T, Yoshida S, Arai M, Kobayashi Y, Yamashita M (2002b) Synthesis and anti-influenza virus activity of 4-guanidino-7-substituted Neu5Ac2en derivatives. Bioorg Med Chem Lett 12:1921–1924

    Article  CAS  Google Scholar 

  • Honda T, Yoshida S, Arai M, Masuda T, Yamashita M (2002) Synthesis and anti-influenza evaluation of polyvalent sialidase inhibitors bearing 4-guanidino-Neu5Ac2en derivatives. Bioorg Med Chem Lett 12:1929–1932

    Article  PubMed  CAS  Google Scholar 

  • Hurt AC, Iannello P, Jachno K, Komadina N, Hampson AW, Barr IG, McKimm-Breschkin JL (2006) Neuraminidase inhibitor-resistant and -sensitive influenza B viruses isolated from an untreated human patient. Antimicrob Agents Chemother 50:1872–1874

    Article  PubMed  CAS  Google Scholar 

  • Hurt AC, Selleck P, Komadina N, Shaw R, Brown L, Barr IG (2007) Susceptibility of highly pathogenic A(H5N1) avian influenza viruses to the neuraminidase inhibitors and adamantanes. Antiviral Res 73:228–231

    Article  PubMed  CAS  Google Scholar 

  • Ilyushina NA, Bovin NV, Webster RG, Govorkova EA (2006) Combination chemotherapy, a potential strategy for reducing the emergence of drug-resistant influenza A variants. Antiviral Res 70:121–131

    Article  PubMed  CAS  Google Scholar 

  • Islam T, von Itzstein M (2007) Anti-influenza drug discovery: are we ready for the next pandemic? Adv Carbohydr Chem Biochem 61:293–352

    Article  PubMed  CAS  Google Scholar 

  • Ison MG, Gubareva LV, Atmar RL, Treanor J, Hayden FG (2006a) Recovery of drug-resistant influenza virus from immunocompromised patients: a case series. J Infect Dis 193:760–764

    Article  CAS  Google Scholar 

  • Ison MG, Mishin VP, Braciale TJ, Hayden FG, Gubareva LV (2006b) Comparative activities of oseltamivir and A-322278 in immunocompetent and immunocompromised murine models of influenza virus infection. J Infect Dis 193:765–772

    Article  CAS  Google Scholar 

  • Ives JA, Carr JA, Mendel DB, Tai CY, Lambkin R, Kelly L, Oxford JS, Hayden FG, Roberts NA (2002) The H274Y mutation in the influenza A/H1N1 neuraminidase active site following oseltamivir phosphate treatment leave virus severely compromised both in vitro and in vivo. Antiviral Res 55:307–317

    Article  PubMed  CAS  Google Scholar 

  • Kati WM, Montgomery D, Maring C, Stoll VS, Giranda V, Chen X, Laver WG, Kohlbrenner W, Norbeck DW (2001) Novel alpha- and beta-amino acid inhibitors of influenza virus neuraminidase. Antimicrob Agents Chemother 45:2563–2570

    Article  PubMed  CAS  Google Scholar 

  • Kati WM, Montgomery D, Carrick R, Gubareva L, Maring C, McDaniel K, Steffy K, Molla A, Hayden F, Kempf D, Kohlbrenner W (2002) In vitro characterization of A-315675, a highly potent inhibitor of A and B strain influenza virus neuraminidases and influenza virus replication. Antimicrob Agents Chemother 46:1014–1021

    Article  PubMed  CAS  Google Scholar 

  • Khorlin AY, Privalova IM, Zakstelskaya LY, Molibog EV, Evstigneeva NA (1970) Synthetic inhibitors of Vibrio cholerae neuraminidase and neuraminidases of some influenza virus strains. FEBS Lett 8:17–19

    Article  PubMed  CAS  Google Scholar 

  • Kim CU, Lew W, Williams MA, Liu H, Zhang L, Swaminathan S, Bischofberger N, Chen MS, Mendel DB, Tai CY, Laver WG, Stevens RC (1997) Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc 119:681–690

    Article  PubMed  CAS  Google Scholar 

  • Kim CU, Lew W, Williams MA, Wu H, Zhang L, Chen X, Escarpe PA, Mendel DB, Laver WG, Stevens RC (1998) Structure-activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J Med Chem 41:2451–2460

    Article  PubMed  CAS  Google Scholar 

  • Kim CU, Chen X, Mendel DB (1999) Neuraminidase inhibitors as anti-influenza virus agents. Antiviral Chem Chemother 10:141–154

    CAS  Google Scholar 

  • Kiso M, Mitamura K, Sakai-Tagawa Y, Shiraishi K, Kawakami C, Kimura K, Hayden FG, Sugaya N, Kawaoka Y (2004) Resistant influenza A viruses in children treated with oseltamivir: descriptive study. Lancet 364:759–765

    Article  PubMed  CAS  Google Scholar 

  • Klumpp K (2004) Recent advances in the discovery and development of anti-influenza drugs. Exp Opin Ther Patents 14:1153–1168

    Article  CAS  Google Scholar 

  • Kuszewski K, Brydak L (2000) The epidemiology and history of influenza. Biomed Pharmacother 54:188–195

    Article  PubMed  CAS  Google Scholar 

  • Laver G, Garman E (2002) Pandemic influenza: its origin and control. Microbes Infect 4:1309–1316

    Article  PubMed  Google Scholar 

  • Le QM, Kiso M, Someya K, Sakai YT, Nguyen TH, Nguyen KHL, Pham ND, Ngyen HH, Yamada S, Muramoto Y, Horimoto T, Takada A, Goto H, Suzuki T, Suzuki Y, Kawaoka Y (2005) Avian flu: isolation of drug-resistant H5N1 virus. Nature 437:1108

    Article  PubMed  CAS  Google Scholar 

  • Lew W, Chen X, Kim CU (2000) Discovery and development of GS 4104 (oseltamivir): an orally active influenza neuraminidase inhibitor. Curr Med Chem 7:663–672

    PubMed  CAS  Google Scholar 

  • Li C-Y, Yu Q, Ye Z-Q, Sun Y, He Q, Li X-M, Zhang W, Luo J, Gu X, Zheng X, Wei L (2007) A nonsynonymous SNP in human cytosolic sialidase in a small Asian population results in reduced enzyme activity: potential link with severe adverse reactions to oseltamivir. Cell Res 17:357–362

    Article  PubMed  CAS  Google Scholar 

  • Lillelund VH, Jensen HH, Liang X, Bols M (2002) Recent developments of transition-state analogue glycosidase inhibitors of non-natural product origin. Chem Rev 102:515–553

    Article  PubMed  CAS  Google Scholar 

  • Liu Z-Y, Wang B, Zhao L-X, Li Y-H, Shao H-Y, Yi H, You X-F, Li Z-R (2007) Synthesis and anti-influenza activities of carboxyl alkoxyalkyl esters of 4-guanidino-Neu5Ac2en (zanamivir). Bioorg Med Chem Lett 17:4851–4854

    Article  PubMed  CAS  Google Scholar 

  • Ly HD, Withers SG (1999) Mutagenesis of glycosidases. Annu Rev Biochem 68:487–522

    Article  PubMed  CAS  Google Scholar 

  • Macdonald SJ, Watson KG, Cameron R, Chalmers DK, Demaine DA, Fenton RJ, Gower D, Hamblin JN, Hamilton S, Hart GJ, Inglis GGA, Jin B, Jones HT, McConnell DB, Mason AM, Nguyen V, Owens IJ, Parry N, Reece PA, Shanahan SE, Smith D, Wu W-Y, Tucker SP (2004) Potent and long-acting dimeric inhibitors of influenza virus neuraminidase are effective at a once-weekly dosing regimen. Antimicrob Agents Chemother 48:4542–4549

    Article  PubMed  CAS  Google Scholar 

  • Macdonald SJ, Cameron R, Demaine DA, Fenton RJ, Foster G, Gower D, Hamblin JN, Hamilton S, Hart GJ, Hill AP, Inglis GGA, Jin B, Jones HT, McConnell DB, McKimm-Breschkin J, Mills G, Nguyen V, Owens IJ, Parry N, Shanahan SE, Smith D, Watson KG, Wu W-Y, Tucker SP (2005) Dimeric zanamivir conjugates with various linking groups are potent, long-lasting inhibitors of influenza neuraminidase including H5N1 avian influenza. J Med Chem 48:2964–2971

    Article  PubMed  CAS  Google Scholar 

  • Maring CJ, Stoll VS, Zhao C, Sun M, Krueger AC, Stewart KD, Madigan DL, Kati WM, Xu Y, Carrick RJ, Montgomery DA, Kempf-Grote A, Marsh KC, Molla A, Steffy KR, Sham HL, Laver WG, Gu Y-G, Kempf DJ, Kohlbrenner WE (2005) Structure-based characterization and optimization of novel hydrophobic binding interactions in a series of pyrrolidine influenza neu-raminidase inhibitors. J Med Chem 48:3980–3990

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Shibuya S, Arai M, Yoshida S, Tomozawa T, Ohno A, Yamashita M, Honda T (2003a) Synthesis and anti-influenza evaluation of orally active bicyclic ether derivatives related to zanamivir. Bioorg Med Chem Lett 13:669–673

    Article  CAS  Google Scholar 

  • Masuda T, Yoshida S, Arai M, Kaneko S, Yamashita M, Honda T (2003b) Synthesis and antiinfluenza evaluation of polyvalent sialidase inhibitors bearing 4-guanidino-Neu5Ac2en derivatives. Chem Pharm Bull (Tokyo) 51:1386–1398

    Article  CAS  Google Scholar 

  • Matrosovich M, Klenk H-D (2003) Natural and synthetic sialic acid-containing inhibitors of influenza virus receptor binding. Rev Med Virol 13:85–97

    Article  PubMed  CAS  Google Scholar 

  • Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk H-D (2004) Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78:12665–12667

    Article  PubMed  CAS  Google Scholar 

  • McCullers JA (2005) Antiviral therapy of influenza. Expert Opin Investig Drugs 14:305–312

    Article  PubMed  CAS  Google Scholar 

  • McCullers JA (2006) The clinical need for new antiviral drugs directed against influenza virus. J Infect Dis 193:751–753

    Article  PubMed  Google Scholar 

  • McKimm-Breschkin JL (2000) Resistance of influenza viruses to neuraminidase inhibitors — a review. Antiviral Res 47:1–17

    Article  PubMed  CAS  Google Scholar 

  • Meanwell NA, Krystal M (1996a) Taking aim at a moving target — inhibitors of influenza virus. I. Virus adsorption, entry and uncoating. Drug Disc Today 1:316–324

    Article  CAS  Google Scholar 

  • Meanwell NA, Krystal M (1996b) Taking aim at a moving target — inhibitors of influenza virus. II. Viral replication, packaging and release. Drug Disc Today 1:388–397

    Article  CAS  Google Scholar 

  • Meindl P, Tuppy H (1969) 2-Deoxy-2,3-dehydrosialic acids. II. Competitive inhibition of Vibrio cholerae neuraminidase by 2-deoxy-2,3-dehydro-N-acylneuraminic acids. Hoppe-Seyler's Z Physiol Chem 350:1088–1092

    PubMed  CAS  Google Scholar 

  • Meindl P, Bodo G, Palese P, Schulman J, Tuppy H (1974) Inhibition of neuraminidase activity by derivatives of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid. Virology 58:457–463

    Article  PubMed  CAS  Google Scholar 

  • Mendel DB, Tai CY, Escarpe PA, Li W, Sidwell RW, Huffman JH, Sweet C, Jakeman KJ, Merson J, Lacy SA, Lew W, Williams MA, Zhang L, Chen MS, Bischofberger N, Kim CU (1998) Oral administration of a prodrug of the influenza virus neuraminidase inhibitor GS 4071 protects mice and ferrets against influenza infection. Antimicrob Agents Chemother 42:640–646

    PubMed  CAS  Google Scholar 

  • Miller CA, Wang P, Flashner M (1978) Mechanism of Arthrobacter sialophilus neuraminidase: the binding of substrates and transition-state analogs. Biochem Biophys Res Commun 83:1479–1487

    Article  PubMed  CAS  Google Scholar 

  • Mishin VP, Hayden FG, Gubareva LV (2005) Susceptibilities of antiviral-resistant influenza viruses to novel neuraminidase inhibitors. Antimicrob Agents Chemother 49:4515–4520

    Article  PubMed  CAS  Google Scholar 

  • Molla A, Kati W, Carrick R, Steffy K, Shi Y, Montgomery D, Gusick N, Stoll VS, Stewart KD, Ng TI, Maring C, Kempf DJ, Kohlbrenner W (2002) In vitro selection and characterization of influenza A. (A/N9) virus variants resistant to a novel neuraminidase inhibitor, A-315675. J Virol 76:5380–5386

    Article  PubMed  CAS  Google Scholar 

  • Monti E, Bassi MT, Bresciani R, Civini S, Croci GL, Papini N, Riboni M, Zanchetti G, Ballabio A, Preti A, Tettamanti G, Venerando B, Borsani G (2004) Molecular cloning and characterization of NEU4, the fourth member of the human sialidase gene family. Genomics 83:445–453

    Article  PubMed  CAS  Google Scholar 

  • Monto AS, McKimm-Breschkin JL, Macken C, Hampson AW, Hay A, Klimov A, Tashiro M, Webster RG, Aymard M, Hayden FG, Zambon M (2006) Detection of influenza viruses resistant to neuraminidase inhibitors in global surveillance during the first 3 years of their use. Antimicrob Agents Chemother 50:2395–2402

    Article  PubMed  CAS  Google Scholar 

  • Moscona A (2005) Oseltamivir resistance — disabling our influenza defenses. N Engl J Med 353:2633–2636

    Article  PubMed  CAS  Google Scholar 

  • Nöhle U, Beau JM, Schauer R (1982) Uptake, metabolism and excretion of orally and intravenously administered, double-labeled N-glycoloylneuraminic acid and single-labeled 2-deoxy-2,3-dehydro-N-acetylneuraminic acid in mouse and rat. Eur J Biochem 126:543–548

    Article  PubMed  Google Scholar 

  • Oxford J (2005) Oseltamivir in the management of influenza. Expert Opin Pharmacother 6:2493–2500

    Article  PubMed  CAS  Google Scholar 

  • Oxford JS (2000) Zanamivir (Glaxo Wellcome). IDrugs 3:447–459

    PubMed  CAS  Google Scholar 

  • Palese P, Compans RW (1976) Inhibition of influenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA): mechanism of action. J Gen Virol 33:159–163

    Article  PubMed  CAS  Google Scholar 

  • Palese P, Schulman JL (1977) Inhibitors of viral neuraminidase as potential antiviral drugs. In: Oxford JS (ed) Chemoprophylaxis and viral infection of the upper respiratory tract, vol 1. CRC, Cleveland, Ohio, pp 189–202

    Google Scholar 

  • Palese P, Schulman JL, Bodo G, Meindl P (1974a) Inhibition of influenza and parainfluenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA). Virology 59:490–498

    Article  CAS  Google Scholar 

  • Palese P, Tobita K, Ueda M, Compans RW (1974b) Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61:397–410

    Article  CAS  Google Scholar 

  • Pegg MS, von Itzstein M (1994) Slow-binding inhibition of sialidase from influenza virus. Biochem Mol Biol Int 32:851–858

    PubMed  CAS  Google Scholar 

  • Pinto LH, Holsinger LJ, Lamb RA (1992) Influenza virus M2 protein has ion channel activity. Cell 69:517–528

    Article  PubMed  CAS  Google Scholar 

  • Rameix-Welti MA, Agou F, Buchy P, Mardy S, Aubin JT, Véron M, van der Werf S, Naffakh N (2006) Natural variation can significantly alter the sensitivity of influenza A (H5N1) viruses to oseltamivir. Antimicrob Agents Chemother 50:3809–3815

    Article  PubMed  CAS  Google Scholar 

  • Rameix-Welti MA, Enouf V, Cuvelier F, Jeannin P, van der Werf S (2008) Enzymatic properties of the neuraminidase of seasonal H1N1 influenza viruses provide insights for the emergence of natural resistance to oseltamivir. PLoS Pathog. 2008 Jul 25;4(7):e1000103

    Article  PubMed  CAS  Google Scholar 

  • Reece PA (2007) Neuraminidase inhibitor resistance in influenza viruses. J Med Virol 79:1577–1586

    Article  PubMed  CAS  Google Scholar 

  • Rich JR, Gehle D, von Itzstein M (2007) Design and synthesis of sialidase inhibitors for influenza virus infections. In: Kamerling JP, Boons G-J, Lee YC, Suzuki A, Tanigichi N, Voragen AGJ (eds) Comprehensive glycoscience. Elsevier, Oxford, pp 885–922

    Google Scholar 

  • Röhm C, Zhou N, Süss J, Mackenzie J, Webster RG (1996) Characterization of a novel influenza hemagglutinin, H15: criteria for determination of influenza A subtypes. Virology 217:508–516

    Article  PubMed  Google Scholar 

  • Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443:45–49

    Article  PubMed  CAS  Google Scholar 

  • Ryan DM, Ticehurst J, Dempsey M, Penn CR (1994) Inhibition of influenza virus replication in mice by GG167 (4-guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid) is consistent with extracellular actiivity of viral neuraminidase (sialidase). Antimicrob Agents Chemother 10:2270–2275

    Google Scholar 

  • Ryan DM, Ticehurst J, Dempsey MH (1995) GG167 (4-guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid) is a potent inhibitor of influenza virus in ferrets. Antimicrob Agents Chemother 39:2583–2584

    PubMed  CAS  Google Scholar 

  • Rye CS, Withers SG (2000) Glycosidase mechanisms. Curr Opin Chem Biol 4:573–580

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Yu RK (1995) Biochemistry and function of sialidases. In: Rosenberg A (ed) Biology of the sialic acids. Plenum, NY, pp 261–313

    Google Scholar 

  • Sheu TG, Deyde VM, Okomo-Adhiambo M, Garten RJ, Xu X, Bright RA, Butler EN, Wallis TR, Klimov AI, Gubareva LV (2008) Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses circulating worldwide from 2004 to 2008. Antimicrob Agents Chemother 52:3284–3292.

    Article  PubMed  CAS  Google Scholar 

  • Shi D, Yang J, Yang D, LeCluyse EL, Black C, You L, Akhlaghi F, Yan B (2006) Anti-influenza prodrug oseltamivir is activated by carboxylesterase human carboxylesterase 1, and the activation is inhibited by antiplatelet agent clopidogrel. J Pharmacol Exp Ther 319:1477–1484

    Article  PubMed  CAS  Google Scholar 

  • Shie J-J, Fang J-M, Wang S-Y, Tsai K-C, Cheng Y-SE, Yang A-S, Hsiao S-C, Su C-Y, Wong C-H (2007) Synthesis of Tamiflu and its phosphonate congeners possessing potent anti-influenza activity. J Am Chem Soc 129:11892–11893

    Article  PubMed  CAS  Google Scholar 

  • Sidwell RW, Smee DF (2002) Peramivir (BCX-1812, RWJ-270201): potential new therapy for influenza. Exp Opin Investig Drugs 11:859–869

    Article  CAS  Google Scholar 

  • Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Ann Rev Biochem 69:531–569

    Article  PubMed  CAS  Google Scholar 

  • Smee DF, Huffman JH, Morrison AC, Barnard DL, Sidwell RW (2001) Cyclopentane neuraminidase inhibitors with potent in vitro anti-influenza virus activities. Antimicrob Agents Chemother 45:743–748

    Article  PubMed  CAS  Google Scholar 

  • Smee DF, Bailey KW, Morrison AC, Sidwell RW (2002) Combination treatment of influenza A virus infections in cell culture and in mice with the cyclopentane neuraminidase inhibitor RWJ-270201 and ribavirin. Chemotherapy 48:88–93

    Article  PubMed  CAS  Google Scholar 

  • Smith FI, Palese P (1989) Variation in the influenza virus genes: epidemiological, pathogenic and evolutionary consequences. In: Krug RM (ed) The influenza viruses. Plenum, NY, pp 319–350

    Google Scholar 

  • Smith PW, Sollis SL, Howes PD, Cherry PC, Cobley KN, Taylor H, Whittington AR, Scicinski J, Bethell RC, Taylor N, Skarzynski T, Cleasby A, Singh O, Wonacott A, Varghese J, Colman P (1996) Novel inhibitors of influenza sialidases related to GG167. Structure-actvity, crystallographic and molecular dynamics studies with 4-H-pyran-2-carboxylic acid 6-carboxamides. Bioorg Med Chem Lett 6:2931–2936

    Article  CAS  Google Scholar 

  • Smith BJ, Colman PM, von Itzstein M, Danylec B, Varghese JN (2001) Analysis of inhibitor binding in influenza virus neuraminidase. Protein Sci 10:689–696

    Article  PubMed  CAS  Google Scholar 

  • Smith BJ, McKimm-Breshkin JL, McDonald M, Fernley RT, Varghese JN, Colman PM (2002) Structural studies of the resistance of influenza virus neuraminidase to inhibitors. J Med Chem 45:2207–2212

    Article  PubMed  CAS  Google Scholar 

  • Smith PW, Sollis SL, Howes PD, Cherry PC, Starkey ID, Cobley KN, Weston H, Scicinski J, Merritt A, Whittington A, Wyatt P, Taylor N, Green D, Bethell R, Madar S, Fenton RJ, Morley PJ, Pateman T, Beresford A (1998) Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. I. Discovery, synthesis, biological activity, and structure-activity relationships of 4-guanidino- and 4-amino-4H-pyran-6-carboxamides. J Med Chem 41:787–797

    Article  PubMed  CAS  Google Scholar 

  • Stoll V, Stewart KD, Maring CJ, Muchmore S, Giranda V, Gu Y-GY, Wang G, Chen Y, Sun M, Zhao C, Kennedy AL, Madigan DL, Xu Y, Saldivar A, Kati W, Laver G, Sowin T, Sham HL, Greer J, Kempf D (2003) Influenza neuraminidase inhibitors: structure-based design of a novel inhibitor series. Biochemistry 42:718–727

    Article  PubMed  CAS  Google Scholar 

  • Sun X-L (2007) Recent anti-influenza strategies in multivalent sialyloligosaccharides and sialylmimetics approaches. Curr Med Chem 14:2304–2313

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Sato K, Kiso M, Hasegawa A (1990) New ganglioside analogs that inhibit influenza virus sialidase. Glycoconj J 7:349–356

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Ito T, Suzuki T, Holland RE Jr, Chambers TM, Kiso M, Ishida H, Kawaoka Y (2000) Sialic acid species as a determinant of the host range of influenza A viruses. J Virol 74:11825–11831

    Article  PubMed  CAS  Google Scholar 

  • Taubenberger JK, Reid AH, Fanning TG (2000) The 1918 influenza virus: a killer comes into view. Virology 274:241–245

    Article  PubMed  CAS  Google Scholar 

  • Taylor NR, von Itzstein M (1994) Molecular modeling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis. J Med Chem 37:616–624

    Article  PubMed  CAS  Google Scholar 

  • Taylor NR, Cleasby A, Singh O, Skarzynski T, Wonacott AJ, Smith PW, Sollis SL, Howes PD, Cherry PC, Bethell R, Colman P, Varghese J (1998) Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. Crystallographic and molecular modeling study of complexes of 4-amino-4H-pyran-6-carboxamides and sialidase from influenza virus types A and B. J Med Chem 41:798–807

    Article  PubMed  CAS  Google Scholar 

  • Thomas A, Jourand D, Bret C, Amara P, Field MJ (1999) Is there a covalent intermediate in the viral neuraminidase reaction? A hybrid potential free-energy study. J Am Chem Soc 121:9693– 9702

    Article  CAS  Google Scholar 

  • Tisdale M (2000) Monitoring of viral susceptibility: new challenges with the development of influenza NA inhibitors. Rev Med Virol 10:45–55

    Article  PubMed  CAS  Google Scholar 

  • Varghese JN, Colman PM (1991) Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 Å resolution. J Mol Biol 221:473–486

    Article  PubMed  CAS  Google Scholar 

  • Varghese JN, Laver WG, Colman PM (1983) Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature 303:35–40

    Article  PubMed  CAS  Google Scholar 

  • Varghese JN, McKimm-Breschkin JL, Caldwell JB, Kortt AA, Colman PM (1992) The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins 14:327–332

    Article  PubMed  CAS  Google Scholar 

  • Varghese JN, Smith PW, Sollis SL, Blick TJ, Sahasrabudhe A, McKimmBreschkin JL, Colman PM (1998) Drug design against a shifting target: a structural basis for resistance to inhibitors in a variant of influenza virus neuraminidase. Structure 6:735–746

    Article  PubMed  CAS  Google Scholar 

  • von Itzstein M, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW, Colman PM, Varghese JN, Ryan DM, Woods JM, Bethell RC, Hotham VJ, Cameron JM, Penn CR (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423

    Article  Google Scholar 

  • von Itzstein M, Dyason JC, Oliver SW, White HF, Wu W-Y, Kok GB, Pegg MS (1996) A study of the active site of influenza virus sialidase: an approach to the rational design of novel anti-influenza drugs. J Med Chem 39:388–391

    Article  Google Scholar 

  • von Itzstein M (2007) The war against influenza: discovery and development of sialidase inhibitors. Nature Rev Drug Discov 6:967–974

    Article  CAS  Google Scholar 

  • von Itzstein M (2008) Avian influenza virus, a very sticky situation. Curr Opin Chem Biol 12:102– 108.

    Article  CAS  Google Scholar 

  • Vorwerk S, Vasella A (1998) Carbocyclic analogs of N-acetyl-2,3-didehydro-2-deoxy-D-neuraminic acid (Neu5Ac2en, DANA): synthesis and inhibition of viral and bacterial neu-raminidases. Angew Chem Int Ed 37:1732–1734

    Article  Google Scholar 

  • Wade RC (1997) ‘Flu’ and structure-based drug design. Structure 5:1139–1145

    Article  PubMed  CAS  Google Scholar 

  • Wagner R, Matrosovich M, Klenk H-D (2002) Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol 12:159–166

    Article  PubMed  CAS  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134

    Article  PubMed  CAS  Google Scholar 

  • Walop JN, Boschman TAC, Jacobs J (1960) Affinity of N-acetylneuraminic acid for influenza virus neuraminidase. Biochim Biophys Acta 44:185–186

    Article  PubMed  CAS  Google Scholar 

  • Wang GT (2002) Recent advances in the discovery and development of anti-influenza drugs. Exp Opin Ther Patents 12:845–861

    Article  Google Scholar 

  • Wang GT, Chen Y, Wang S, Gentles R, Sowin T, Kati W, Muchmore S, Giranda V, Stewart K, Sham H, Kempf D, Laver WG (2001) Design, synthesis, and structural analysis of influenza neuraminidase inhibitors containing pyrrolidine cores. J Med Chem 44:1192–1201

    Article  PubMed  CAS  Google Scholar 

  • Wang GT, Wang S, Gentles R, Sowin T, Maring CJ, Kempf DJ, Kati WM, Stoll V, Stewart KD, Laver G (2005) Design, synthesis, and structural analysis of inhibitors of influenza neu-raminidase containing a 2,3-disubstituted tetrahydrofuran-5-carboxylic acid core. Bioorg Med Chem Lett 15:125–128

    Article  PubMed  CAS  Google Scholar 

  • Wang MZ, Tai CY, Mendel DB (2002) Mechanism by which mutations at His274 alter sensitivity of influenza a virus N1 neuraminidase to oseltamivir carboxylate and zanamivir. Antimicrob Agents Chemother 46:3809–3816

    Article  PubMed  CAS  Google Scholar 

  • Wang S-Q, Du Q-S, Chou K-C (2007) Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem Biophys Res Commun 354:634–640

    Article  PubMed  CAS  Google Scholar 

  • Watson JN, Dookhun V, Borgford TJ, Bennet AJ (2003) Mutagenesis of the conserved active-site tyrosine changes a retaining sialidase into an inverting sialidase. Biochemistry 42:12682–12690

    Article  PubMed  CAS  Google Scholar 

  • Watson JN, Newstead S, Narine AA, Taylor G, Bennet AJ (2005) Two nucleophilic mutants of the Micromonospora viridifaciens sialidase operate with retention of configuration by two different mechanisms. Chembiochem 6:1999–2004

    Article  PubMed  CAS  Google Scholar 

  • Watson KG, Cameron R, Fenton RJ, Gower D, Hamilton S, Jin B, Krippner GY, Luttick A, McConnell D, MacDonald SJ, Mason AM, Nguyen V, Tucker SP, Wu WY (2004) Highly potent and long-acting trimeric and tetrameric inhibitors of influenza virus neuraminidase. Bioorg Med Chem Lett 14:1589–1592

    Article  PubMed  CAS  Google Scholar 

  • Watts AG, Withers SG (2004) The synthesis of some mechanistic probes for sialic acid processing enzymes and the labeling of a sialidase from Trypanosoma rangeli. Can J Chem 82:1581–1588

    Article  CAS  Google Scholar 

  • Watts AG, Oppezzo P, Withers SG, Alzari PM, Buschiazzo A (2006) Structural and kinetic analysis of two covalent sialosyl-enzyme intermediates on Trypanosoma rangeli sialidase. J Biol Chem 281:4149–4155

    Article  PubMed  CAS  Google Scholar 

  • Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Mol Biol Rev 56:152–179

    CAS  Google Scholar 

  • Webster RG, Shortridge KF, Kawaoka Y (1997) Influenza: interspecies transmission and emergence of new pandemics. FEMS Immunol Med Microbiol 18:275–279

    Article  PubMed  CAS  Google Scholar 

  • White CL, Janakiraman MN, Laver WG, Philippon C, Vasella A, Air GM, Luo M (1995) A sialic acid-derived phosphonate analog inhibits different strains of influenza virus neuraminidase with different efficiencies. J Mol Biol 245:623–634

    Article  PubMed  CAS  Google Scholar 

  • Wintermeyer SM, Nahata MC (1995) Rimantidine: a clinical perspective. Ann Pharmacother 29:299–310

    PubMed  CAS  Google Scholar 

  • Woods JM, Bethell RC, Coates JAV, Healy N, Hiscox SA, Pearson BA, Ryan DM, Ticehurst J, Tilling J, Walcott SM, Penn CR (1993) 4-Guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneur-aminic acid is a highly effective inhibitor both of the sialidase (neuraminidase) and of growth of a wide range of influenza-A and influenza-B viruses in vitro. Antimicrob Agents Chemother 37:1473–1479

    PubMed  CAS  Google Scholar 

  • Wyatt PG, Coomber BA, Evans DN, Jack TI, Fulton HE, Wonacott AJ, Colman P, Varghese J (2001) Sialidase inhibitors related to zanamivir. Further SAR studies of 4-amino-4H-pyran-2-carboxylic acid-6-propylamides. Bioorg Med Chem Lett 11:669–673

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Kumazawa H, Inami K, Teshima T, Shiba T (1992) Syntheses of sialic acid isomers with inhibitory activity against neuraminidase. Tetrahedron Lett 33:5791–5794

    Article  CAS  Google Scholar 

  • Yamashita M (2004) R-118958, a unique anti-influenza agent showing high efficacy for both prophylaxis and treatment after a single administration: from the in vitro stage to phase I study. Int Congress Ser 1263:38–42

    Article  CAS  Google Scholar 

  • Yamashita M, Ohno A, Tomozawa T, Yoshida S (2003) R-118958, a unique anti-influenza agent. I. A prodrug form of R-125489, a novel inhibitor of influenza virus neuraminidase. In: 43rd interscience conference on antimicrobial agents and chemotherapy, Chicago, USA, Sept 14–17, Poster F-1829

    Google Scholar 

  • Yen H-L, Herlocher LM, Hoffmann E, Matrosovich MN, Monto AS, Webster RG, Govorkova EA (2005) Neuraminidase inhibitor-resistant influenza viruses may differ substantially in fitness and transmissibility. Antimicrob Agents Chemother 49:4075–4084

    Article  PubMed  CAS  Google Scholar 

  • Zambon M, Hayden FG (2001) Position statement: global neuraminidase inhibitor susceptibility network. Antiviral Res 49:147–156

    Article  PubMed  CAS  Google Scholar 

  • Zechel DL, Withers SG (2001) Dissection of nucleophilic and acid-base catalysis in glycosidases. Curr Opin Chem Biol 5:643–649

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Yu K, Zhu W, Jiang H (2006) Neuraminidase pharmacophore model derived from diverse classes of inhibitors. Bioorg Med Chem Lett 16:3009–3014

    Article  PubMed  CAS  Google Scholar 

  • Zürcher T, Yates PJ, Daly J, Sahasrabudhe A, Walters M, Dash L, Tisdale M, McKimm-Breschkin JL (2006) Mutations conferring zanamivir resistance in human influenza virus N2 neuraminidases compromise virus fitness and are not stably maintained in vitro. J Antimicrob Chemother 58:723–732

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark von Itzstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Itzstein, M.v., Thomson, R. (2009). Anti-Influenza Drugs: The Development of Sialidase Inhibitors. In: Kräusslich, HG., Bartenschlager, R. (eds) Antiviral Strategies. Handbook of Experimental Pharmacology, vol 189. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79086-0_5

Download citation

Publish with us

Policies and ethics