Skip to main content

Continuous-Time Age-Structured Models in Population Dynamics and Epidemiology

  • Chapter
Mathematical Epidemiology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 1945))

We present continuous-time models for age-structured populations and disease transmission. We show how to use the method of characteristic lines to analyze the model dynamics and to write an age-structured population model as an integral equation model. We then extend to an agestructured SIR epidemic model. As an example we describe an age-structured model for AIDS, derive a formula for the reproductive number of infection, and show how important a role pair-formation plays in the modeling process. In particular, we outline the semi-group method used in an age-structured AIDS model with non-random mixing. We also discuss models for populations and disease spread with discrete age structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Anderson and R. M. May, Infectious Diseases of Humans, Dynamics and Control, Oxford University Press, Oxford, 1991.

    Google Scholar 

  2. S. P. Blythe and C. Castillo-Chavez, Like-with-like preference and sexual mixing models, Math. Biosci., 96 (1989), 221–238.

    Article  MATH  Google Scholar 

  3. S. P. Blythe, C. Castillo-Chavez, J. S. Palmer and M. Cheng, Toward a unified theory of sexual mixing and pair formation, Math. Biosci., 107 (1991), 379–405.

    Article  MATH  Google Scholar 

  4. F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, Berlin Heidelberg New York, 2001.

    MATH  Google Scholar 

  5. S. Busenberg and C. Castillo-Chavez, Interaction, pair formation and force of infection terms in sexually transmitted diseases, in: C. Castillo-Chavez, (ed.), Mathematical and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomathematics, Vol. 83, Springer, Berlin Heidelberg New York, (1989), 289–300.

    Google Scholar 

  6. S. Busenberg and C. Castillo-Chavez, A general solution of the problem of mixing of subpopulations and its application to risk- and age-structured epidemic models for the spread of AIDS, IMA J. Math. Appl. Med. Biol., 8 (1991), 1–29.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Castillo-Chavez and S. P. Blythe, Mixing Framework for Social/Sexual Behavior, in: C. Castillo-Chavez, (ed.), Mathematical and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomathematics, Vol. 83, Springer, Berlin Heidelberg New York, (1989), 275–288.

    Google Scholar 

  8. R. F. Costantino and R. A. Desharnais, Population Dynamics and the ‘Tribolium’ Model: Genetics and Demography, Mono. Theor. Appl. Gen., 3 (1991), Springer, Berlin Heidelberg New York.

    Google Scholar 

  9. J. M. Cushing, Existence and stability of equilibria in age-structured population dynamics, J. Math. Biol., 20 (1984), 259–276.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.M. Cushing, Equilibria in structured populations, J. Math. Biol., 23 (1985), 15–39.

    MATH  MathSciNet  Google Scholar 

  11. J. M. Cushing, An Introduction to Structured Population Dynamics, SIAM, Philadelphia, 1998.

    MATH  Google Scholar 

  12. J. M. Cushing, Juvenile versus adult competition, J. Math. Biol., 29 (1991), 457–473.

    Article  MATH  MathSciNet  Google Scholar 

  13. O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382.

    Article  MATH  MathSciNet  Google Scholar 

  14. O. Diekmann, K. Dietz and J.A.P. Heesterbeek, The basic reproduction ratio for sexually transmitted diseases, Part 1: Theoretical considerations, Math. Biosci., 107 (1991), 325–339.

    Article  MATH  Google Scholar 

  15. O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases, Wiley, New York, 2000.

    Google Scholar 

  16. W. S. Gurney and R. M. Nisbet, Ecological Dynamics, Oxford University Press, Oxford, 1998.

    Google Scholar 

  17. M. E. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics, Archive for Rational Mechanics and Analysis, 54 (1985), 281–300.

    MathSciNet  Google Scholar 

  18. K. P. Hadeler, R. Waldstatter and A. Worz-Busekros, Models for pair-formation in bisexual populations, J. Math. Biol., 26 (1988), 635–649.

    MATH  MathSciNet  Google Scholar 

  19. K. P. Hadeler and J. Müller, Vaccination in age structured populations I: The reproductive number, in: V. Isham and G. Medley, (eds.), Models for Infectious Human Diseases: Their Structure and Relation to Data, Cambridge University Press, Combridge, (1995), 90–101.

    Google Scholar 

  20. A. Hastings, Age-dependent predation is not a simple process, I. Continuous models, Theor. Popul. Biol., 23 (1983), 347–362.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. A. P. Heesterbeek, R 0, Thesis, Centre for Mathematics and Computer Science, Amsterdam, (1991).

    Google Scholar 

  22. H. W. Hethcote, An age-structured model for pertussis transmission, Math. Biosci., 145 (1997), 89–136.

    Article  MATH  MathSciNet  Google Scholar 

  23. H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev, 42 (2000), 599–653.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. M. Hyman, Jia Li and E. A. Stanley, Threshold conditions for the spread of the HIV infection in age-structured populations of homosexual men, J. Theor. Biol., 166 (1994), 9–31.

    Article  Google Scholar 

  25. J. M. Hyman and Jia Li, An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations, Math. Biosci., 167 (2000), 65–86.

    Article  MATH  Google Scholar 

  26. M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Appl. Math. Monogr. C.N.R., 7 (1995).

    Google Scholar 

  27. H. Inaba, Threshold and stability for an age-structured epidemic model, J. Math. Biol., 28 (1990), 411–434.

    Article  MATH  MathSciNet  Google Scholar 

  28. J. A. Jacquez, C. P. Simon, and J. Koopman, The reproductive number in deterministic models of contagious diseases, Comm. Theor. Biol., 2 (1991), 159–209.

    Google Scholar 

  29. K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, Berlin Heidelberg New York, 1999.

    Google Scholar 

  30. T. Kostova and Jia Li, Oscillations and stability due to juvenile versus adult competition, Int. J. Comput. Math. Appl., 32 (1996), 57–70.

    MATH  Google Scholar 

  31. T. Kostova, Jia Li and M. Friedman, Two models for competition between age classes, Math. Biosci., 157 (1999), 65–89.

    Article  MathSciNet  Google Scholar 

  32. Jia Li and T. G. Hallam, Survival in continuous structured population models, J. Math. Biol., 26 (1988), 421–433.

    MATH  MathSciNet  Google Scholar 

  33. Jia Li, Threshold conditions in age-structured AIDS models with biased mixing, CNLS Newsletter, Los Alamos National Laboratory, 58 (1990), 1–10.

    Google Scholar 

  34. A. G. McKendrick, Applications of mathematics to medical problems, Proc. Edinb. Math. Soc. 44 (1926), 98–130.

    Article  Google Scholar 

  35. R. M. Nisbet and L. Onyiah, Population dynamic consequences of competition within and between age classes. J. Math. Bio., 32 (1994), 329–344.

    Article  MATH  Google Scholar 

  36. T.R. Park, Age-Dependence in Epidemic Models of Vector-Borne Infections, Ph.D. Dissertation, University of Alabama in Huntsville, 2004.

    Google Scholar 

  37. R. Ross, The Prevention of Malaria, Murray, London, 1909.

    Google Scholar 

  38. H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, 2003.

    MATH  Google Scholar 

  39. W. O. Tschumy, Competition between juveniles and adults in age-structured populations, Theor. Popul. Biol., 21 (1982), 255–268.

    Article  MATH  MathSciNet  Google Scholar 

  40. D. W. Tudor, An age-dependent epidemic model with application to measles, Math. Biosci., 73 (1985), 131–147.

    Article  MATH  MathSciNet  Google Scholar 

  41. P. Waltman, Deterministic Threshold Models in the Theory of Epidemics, Lect. Notes Biomath., 1 (1974), Springer, Berlin Heidelberg New York.

    MATH  Google Scholar 

  42. G. F. Webb, Theory of Age Dependent Population Dynamics, Marcel Dekker, New York, 1985.

    MATH  Google Scholar 

  43. W. H. Wernsdorfer, The importance of malaria in the world, in: Kreier, J. P. (ed.), Malaria, Epidemology, Chemotherapy, Morphology, and Metabolism, Vol. 1, Academic, New York, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, J., Brauer, F. (2008). Continuous-Time Age-Structured Models in Population Dynamics and Epidemiology. In: Brauer, F., van den Driessche, P., Wu, J. (eds) Mathematical Epidemiology. Lecture Notes in Mathematics, vol 1945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78911-6_9

Download citation

Publish with us

Policies and ethics