Skip to main content

Constructing Level-2 Phylogenetic Networks from Triplets

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4955))

Abstract

Jansson and Sung showed that, given a dense set of input triplets T (representing hypotheses about the local evolutionary relationships of triplets of taxa), it is possible to determine in polynomial time whether there exists a level-1 network consistent with T, and if so to construct such a network [18]. Here we extend this work by showing that this problem is even polynomial-time solvable for the construction of level-2 networks. This shows that, assuming density, it is tractable to construct plausible evolutionary histories from input triplets even when such histories are heavily non-tree like. This further strengthens the case for the use of triplet-based methods in the construction of phylogenetic networks. We also implemented the algorithm and applied it to yeast data.

Part of this research has been funded by the Dutch BSIK/BRICKS project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a Tree from Lowest Common Ancestors with an Application to the Optimization of Relational Expressions. SIAM Journal on Computing 10(3), 405–421 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bryant, D.: Building Trees, Hunting for Trees, and Comparing Trees: Theory and Methods in Phylogenetic Analysis, Ph.D. thesis, University of Canterbury, Christchurch, New Zealand (1997)

    Google Scholar 

  3. Bryant, D., Steel, M.: Constructing Optimal Trees from Quartets. Journal of Algorithms 38(1), 237–259 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, H.-L., Jansson, J., Lam, T.W., Yiu, S.-M.: Reconstructing an Ultrametric Galled Phylogenetic Network from a Distance Matrix. Journal of Bioinformatics and Computational Biology 4(4), 807–832 (2006)

    Article  Google Scholar 

  5. Erdös, P.L., Steel, M.A., Szekely, L.A., Warnow, T.: A few logs suffice to build (almost) all trees (Part II). Theoretical Computer Science 221(1), 77–118 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ga̧sieniec, L., Jansson, J., Lingas, A., Östlin, A.: On the complexity of constructing evolutionary trees. Journal of Combinatorial Optimization 3, 183–197 (1999)

    Article  MathSciNet  Google Scholar 

  7. Guindon, S., Gascuel, O.: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52(5), 696–704 (2003)

    Article  Google Scholar 

  8. Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. Journal of Bioinformatics and Computational Biology 2, 173–213 (2004)

    Article  Google Scholar 

  9. He, Y.-J., Huynh, T.N.D., Jansson, J., Sung, W.-K.: Inferring Phylogenetic Relationships Avoiding Forbidden Rooted Triplets. Journal of Bioinformatics and Computational Biology 4(1), 59–74 (2006)

    Article  Google Scholar 

  10. Holder, M., Lewis, P.O.: Phylogeny estimation: Traditional and bayesian approaches. Nature Reviews Genetics 4, 275–284 (2003)

    Article  Google Scholar 

  11. Huson, D.H., Bryant, D.: Application of Phylogenetic Networks in Evolutionary Studies. Molecular Biology and Evolution 23(2), 254–267 (2006)

    Article  Google Scholar 

  12. Huson, D.H., Klöpper, T.H.: Beyond Galled Trees - Decomposition and Computation of Galled Networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 211–225. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Iersel, L.J.J. van, Keijsper, J.C.M., Kelk, S.M., Stougie, L.: Constructing level-2 phylogenetic networks from triplets (preprint, 2007), http://arxiv.org/abs/0707.2890

  14. Jansson, J.: On the complexity of inferring rooted evolutionary trees. In: proceedings of GRACO 2001, ENDM 7, pp. 121–125. Elsevier, Amsterdam (2001)

    Google Scholar 

  15. Jansson, J., Ng, J.H.-K., Sadakane, K., Sung, W.-K.: Rooted maximum agreement supertrees. Algorithmica 43, 293–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jansson, J., Nguyen, N.B., Sung, W.-K.: Algorithms for Combining Rooted Triplets into a Galled Phylogenetic Network. SIAM Journal on Computing 35(5), 1098–1121 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jansson, J., Sung, W.-K.: Inferring a Level-1 Phylogenetic Network from a Dense Set of Rooted Triplets. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 462–471. Springer, Heidelberg (2004)

    Google Scholar 

  18. Jansson, J., Sung, W.-K.: Inferring a Level-1 Phylogenetic Network from a Dense Set of Rooted Triplets. Theoretical Computer Science 363, 60–68 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, T., Kearney, P.E., Li, M.: A Polynomial Time Approximation Scheme for Inferring Evolutionary Trees from Quartet Topologies and Its Application. SIAM Journal on Computing 30(6), 1942–1961 (2000)

    Article  MathSciNet  Google Scholar 

  20. Kidd, S., Hagen, F., Tscharke, R., Huynh, M., Bartlett, K., Fyfe, M., MacDougall, L., Boekhout, T., Kwon-Chung, K.J., Meyer, W.: A rare genotype of Cryptococcus gattii caused the Cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). In: Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 17258–17263 (2004)

    Google Scholar 

  21. LEVEL2: A fast method for constructing level-2 phylogenetic networks from dense sets of rooted triplets, http://homepages.cwi.nl/~kelk/level2triplets.html

  22. Makarenkov, V., Kevorkov, D., Legendre, P.: Phylogenetic Network Reconstruction Approaches. In: Applied Mycology and Biotechnology. International Elsevier Series 6, Bioinformatics, vol. 6, pp. 61–97 (2006)

    Google Scholar 

  23. Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun, J., Timme, R.: Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(1), 13–23 (2004)

    Article  Google Scholar 

  24. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  25. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9, 91–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, B.Y.: Constructing the maximum consensus tree from rooted triples. Journal of Combinatorial Optimization 8, 29–39 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Vingron Limsoon Wong

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Iersel, L., Keijsper, J., Kelk, S., Stougie, L., Hagen, F., Boekhout, T. (2008). Constructing Level-2 Phylogenetic Networks from Triplets. In: Vingron, M., Wong, L. (eds) Research in Computational Molecular Biology. RECOMB 2008. Lecture Notes in Computer Science(), vol 4955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78839-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78839-3_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78838-6

  • Online ISBN: 978-3-540-78839-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics