Skip to main content

Beyond Galled Trees - Decomposition and Computation of Galled Networks

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4453))

Abstract

Reticulate networks are a type of phylogenetic network that are used to represent reticulate evolution involving hybridization, horizontal gene transfer or recombination. The simplest form of these networks are galled trees, in which all reticulations are independent of each other. This paper introduces a more general class of reticulate networks, that we call galled networks, in which reticulations are not necessarily independent, but may overlap in a tree-like manner. We prove a Decomposition Theorem for these networks that has important consequences for their computation, and present a fixed-parameter-tractable algorithm for computing such networks from trees or binary sequences. We provide a robust implementation of the algorithm and illustrate its use on two biological datasets, one based on a set of three gene-trees and the other based on a set of binary characters obtained from a restriction site map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandelt, H.J., Dress, A.W.M.: A canonical decomposition theory for metrics on a finite set. Advances in Mathematics 92, 47–105 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254–267 (2006), Software available from: http://www.splitstree.org

    Article  Google Scholar 

  3. Sang, T., Zhong, Y.: Testing hybrization hypotheses based on incongruent gene trees. System. Biol. 49, 422–424 (2000)

    Article  Google Scholar 

  4. Linder, C.R., Rieseberg, L.H.: Reconstructing patterns of reticulate evolution in plants. Am. J. Bot. 91, 1700–1708 (2004)

    Article  Google Scholar 

  5. Nakhleh, L., Warnow, T., Linder, C.R.: Reconstructing reticulate evolution in species - theory and practice. In: Proceedings of the Eighth International Conference on Research in Computational Molecular Biology (RECOMB), pp. 337–346 (2004)

    Google Scholar 

  6. Huson, D., Kloepper, T., Lockhart, P., Steel, M.: Reconstruction of reticulate networks from gene trees. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P., Waterman, M. (eds.) Research in Computational Molecular Biology. LNCS (LNBI), vol. 3500, pp. 233–249. Springer, Heidelberg (2005)

    Google Scholar 

  7. Bordewich, M., Semple, C.: Computing the minimum number of hybridisation events for a consistent evolutionary history (in press, 2006)

    Google Scholar 

  8. Hallett, M., Largergren, J., Tofigh, A.: Simultaneous identification of duplications and lateral transfers. In: Proceedings of the Eight International Conference on Research in Computational Molecular Biology (RECOMB), pp. 347–356 (2004)

    Google Scholar 

  9. Hudson, R.R.: Properties of the neutral allele model with intergenic recombination. Theoretical Population Biology 23, 183–201 (1983)

    Article  MATH  Google Scholar 

  10. Hein, J.: Reconstructing evolution of sequences subject to recombination using parsimony. Math. Biosci., 185–200 (1990)

    Google Scholar 

  11. Griffiths, R.C., Marjoram, P.: Ancestral inference from samples of DNA sequences with recombination. J. Computational Biology 3, 479–502 (1996)

    Article  Google Scholar 

  12. Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phylogenetic networks with constrained recombination. In: Proceedings of the IEEE Computer Society Conference on Bioinformatics, p. 363. IEEE, Los Alamitos (2003)

    Google Scholar 

  13. Song, Y., Hein, J.: Parsimonious reconstruction of sequence evolution and haplotype blocks: Finding the minimum number of recombination events. In: Proceedings of the Workshop on Algorithms in Bioinformatics, pp. 287–302 (2003)

    Google Scholar 

  14. Gusfield, D., Eddhu, S., Langley, C.: The fine structure of galls in phylogenetic networks. INFORMS J. of Computing, Special Issue on Computational Biology 16, 459–469 (2004)

    MathSciNet  Google Scholar 

  15. Song, Y., Hein, J.: On the minimum number of recombination events in the evolutionary history of DNA sequences. J. Math. Biol. 48, 160–186 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gusfield, D., Bansal, V.: A fundamental decomposition theory for phylogenetic networks and incompatible characters. In: Proceedings of the Ninth International Conference on Research in Computational Molecular Biology (RECOMB), pp. 217–232 (2005)

    Google Scholar 

  17. Huson, D., Kloepper, T.: Computing recombination networks from binary sequences. Bioinformatics 21, ii159–ii165. ECCB (2005)

    Article  Google Scholar 

  18. Song, Y., Hein, J.: Constructing minimal ancestral recombination graphs. J. Comp. Biol. 12, 147–169 (2005)

    Article  Google Scholar 

  19. Lyngsø, R.B., Song, Y.S., Hein, J.: Minimum recombination histories by branch and bound. In: WABI, pp. 239–250 (2005)

    Google Scholar 

  20. Baroni, M., Semple, C., Steel, M.A.: A framework for representing reticulate evolution. Annals of Combinatorics (In press)

    Google Scholar 

  21. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. Journal of Computational Biology 8, 69–78 (2001)

    Article  Google Scholar 

  22. Pryor, B.M., Bigelow, D.M.: Molecular characterization of Embellisia and Nimbya species and their relationship to Alternaria, Ulocladium and Stemphylium. Mycologia 95, 1141–1154 (2003)

    Article  Google Scholar 

  23. Kumar, A., Black, W., Rai, K.: An estimate of phylogenetic relationships among culicine mosquitoes using a restriction map of the rDNA cistron. Insect Molecular Biology 7, 367–373 (1998)

    Article  Google Scholar 

  24. Kimura, M.: The number of heterozygous nucleotide sites maintained in a finite population due to the steady flux of mutations. Genetics 61, 893–903 (1969)

    Google Scholar 

  25. Dress, A.W.M., Huson, D.H.: Constructing splits graphs. IEEE/ACM Transactions in Computational Biology and Bioinformatics 1, 109–115 (2004)

    Article  Google Scholar 

  26. Sanderson, M.J., Donoghue, M.J., Piel, W., Eriksson, T.: Treebase: a prototype database of phylogenetic analyses and an interactive tool for browsing the phylogeny of life. Amer. Jour. Bot. 81, 183 (1994)

    Article  Google Scholar 

  27. Huson, D., Steel, M., Whitfield, J.: Reducing distortion in phylogenetic networks. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 150–161. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Terry Speed Haiyan Huang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Huson, D.H., Klöpper, T.H. (2007). Beyond Galled Trees - Decomposition and Computation of Galled Networks. In: Speed, T., Huang, H. (eds) Research in Computational Molecular Biology. RECOMB 2007. Lecture Notes in Computer Science(), vol 4453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71681-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71681-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71680-8

  • Online ISBN: 978-3-540-71681-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics