Skip to main content

Methanogenesis in Arctic Permafrost Habitats

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

In polar regions, huge layers of frozen ground, termed permafrost, are formed. Permafrost covers more than 25% of the land surface and significant parts of the coastal sea shelves. Permafrost habitats are controlled by extreme climate and terrain conditions. Particularly, the seasonal freezing and thawing in the upper active layer of permafrost leads to distinct gradients in temperature and geochemistry. Methanogenic archaea in permafrost environments have to survive extremely cold temperatures, freeze-thaw cycles, desiccation and starvation under long-lasting background radiation over geological time scales. Although the biology of permafrost microorganisms remains relatively unexplored, recent findings show that methanogenic communities in this extreme environment are composed by members of the major phyla of the methanogenic archaea (Methanobrevibacter, Methanobacterium, Methanosaeta, Methanosarcina, Methanolobus/Methanohalophylus/Methanococcoides, Methanoculleus/Methanogenium), with a total biomass comparable to temperate soil ecosystems. Currently, methanogenic archaea were the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anisomov OA, Nelson FE, Pavlov AV (1999) Predictive scenarios of permafrost development under conditions of global climate change in the XXI century. Earth Cryology 3: 15–25.

    Google Scholar 

  • Anisimov O, Reneva S (2006) Permafrost and changing climate: The Russian Perspective. AMBIO 35: 169–175.

    Google Scholar 

  • Bockheim JG, Everett LR, Hinkel KM, Nelson FE, Brown J (1999) Soil organic storage and distribution in Arctic Tundra, Barrow, Alaska. Soil Sci Soc Am J 63: 934–940.

    Article  CAS  Google Scholar 

  • Boike J, Wille C, Abnizova A (2008) Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia. J Geophys Res 113, doi: 10.1029/2007JG000540.

    Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotech 13: 253–261.

    Article  PubMed  CAS  Google Scholar 

  • Chan OC, Claus P, Casper P, Ulrich A, Lueders T, Conrad R (2005) Vertical distribution of the methanogenic archaeal community in Lake Dagow sediment. Environ Microbiol 7: 1139–1149.

    Article  PubMed  CAS  Google Scholar 

  • Conrad R (2005) Quantification of methanogenic pathways using stable carbonisotopic signatures: a review and a proposal. Organ Geochem 36: 739–752.

    Article  CAS  Google Scholar 

  • Eicher J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19: 261–278.

    Article  Google Scholar 

  • Eugster W, Rouse WR, Pielke RA, Mc Fadden JP, Baldocchi DD, Kittel TGF, Chapin III FS, Liston G, Vidale PL, Vaganov E, Chambers S (2000) Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Global Change Biol 6: 84–115.

    Article  Google Scholar 

  • Franzmann PD, Springer N, Ludwig W, De Macario EC, Rohde M (1992) A methanogenic archaeon from Ace Lake, Antarctica – Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15: 573–58.

    Google Scholar 

  • Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, Conway de Macario E, Boone DR (1997) Methanogenium frigidium sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47: 1068–1072.

    Article  PubMed  CAS  Google Scholar 

  • French HM (1996) The periglacial environment. London: Longman.

    Google Scholar 

  • Ganzert L, Jurgens G, Münster U, Wagner D (2007) Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol 59: 476–488.

    Article  PubMed  CAS  Google Scholar 

  • Garcia JL, Patel BKC, Olliver B (2000) Taxonomic, phylogenetic and ecological diversity of methanogenic archaea. Anaerobe 6: 205–226.

    Article  PubMed  CAS  Google Scholar 

  • Gounot AM (1999) Microbial life in permanently cold soils. In Cold-adapted organisms. R Margesinand, F Schinner (eds). Berlin: Springer, pp. 3–16.

    Google Scholar 

  • Grosskopf R, Stubner S, Liesack W (1998) Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64: 4983–4989.

    CAS  Google Scholar 

  • Guggenberger G, Zech W, Schulten H-R (1994) Formation and mobilization pathways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions. Organic Geochem 21: 51–66.

    Article  CAS  Google Scholar 

  • Jeanthon C, LHaridon S, Pradel N, Prieur D (1999) Rapid identification of hyperthermophilic methanococci isolated from deep-sea hydrothermal vents. Int J Syst Bacteriol 49: 591–594.

    Article  PubMed  CAS  Google Scholar 

  • Hales BA, Edwards C, Ritchie DA, Hall G, Pickup RW, Saunders JR (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62: 668–675.

    PubMed  CAS  Google Scholar 

  • Høj L, Olsen RA, Torsvik VL (2005) Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78°N) as characterised by 16S rRNA gene fingerprinting. FEMS Microbiol Ecol 53: 89–101.

    Article  PubMed  Google Scholar 

  • Høj L, Rusten M, Haugen LE, Olsen RA, Torsvik VL (2006) Effects of water regime on archaeal community composition in Arctic soils. Environ. Microbiol 8: 984–996.

    Article  PubMed  Google Scholar 

  • Jurgens G, Glöckner FO, Amann R, Saano A, Montonen L, Likolammi M, Münster U (2000) Identification of novel Archaea in bacterioplancton of a boreal forest lake by phylogenetic analysis and fluorescence in situ hybridisation. FEMS Microbiol Ecol 34: 45–56.

    PubMed  CAS  Google Scholar 

  • Kaiser K, Guggenberger G, Haumeier L, Zech W (2001) Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fragus sylvatica L.) stand in northeastern Bavaria, Germany. Biogeochemistry 55: 103–143.

    Article  CAS  Google Scholar 

  • Keough BP, Schmidt TM, Hicks RE (2003) Archaeal nucleic acids in picoplankton from great lakes on three continents. Microbial Ecol 46: 238–248.

    Article  CAS  Google Scholar 

  • Kobabe S, Wagner D, Pfeiffer EM (2004) Characterization of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridization. FEMS Microbiol Ecol 50: 13–23.

    Article  PubMed  CAS  Google Scholar 

  • Koch K, Knoblauch C, Wagner D (2009) Methanogenic community composition and anaerobic carbon turnover in submarine permafrost sediments of the Siberian Laptev Sea. Environ Microbiol 11(3): 656–668.

    Article  Google Scholar 

  • Kutzbach L, Wagner D, Pfeiffer EM (2004) Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry 69: 341–362.

    Article  CAS  Google Scholar 

  • Lange M, Ahring B (2001) A comprehensive study into the molecular methodology and molecular biology of methanogenic archaea. FEMS Microbiol Rev 25: 553–571.

    Article  PubMed  CAS  Google Scholar 

  • Morozova D, Möhlmann D, Wagner D (2007) Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions. Orig Life Evol Biosph 37: 189–200.

    Article  PubMed  CAS  Google Scholar 

  • Morozova D, Wagner D (2007) Stress response of methanogenic archaea from Siberian permafrost compared to methanogens from non-permafrost habitats. FEMS Microbiol Ecol 61: 16–25.

    Article  PubMed  CAS  Google Scholar 

  • Mathrani IM, Boone DR (1985) Isolation and characterization of a moderatly halophilic methanogen from a solar saltern. Appl Environ Microbiol 50: 140–143.

    PubMed  CAS  Google Scholar 

  • Metje M, Frenzel P (2007) Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environ Microbiol 9: 954–964.

    Article  PubMed  CAS  Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5: 787–797.

    Article  PubMed  CAS  Google Scholar 

  • Oechel WC, Hastings SJ, Jenkins M, Riechers G, Grulke NE, Vourlitis GL (1993) Recent change of arctic tundra ecosystems from a net carbon sink to a source. Nature 361: 520–526.

    Article  Google Scholar 

  • Ostroumov V (2004) Physico-chemical processes in cryogenic soils. In Cryosols. JM Kimble (ed.). Berlin: Springer, pp. 347–364.

    Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298: 156–159.

    Article  CAS  Google Scholar 

  • Ramakrishnan B, Lueders T, Dunfield PF, Conrad R, Friedrich MW (2001) Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production. FEMS Microbiol Ecol 37: 175–186.

    Article  CAS  Google Scholar 

  • Richter-Menge J, Overland J, Proshutinsky A, et al. (2006) State of the Arctic Report. NOAA OAR Special Report, NOAA/OAR/PMEL. Seattle, WA, p. 36.

    Google Scholar 

  • Rivkina EM, Gilichinsky D, Wagener S, Tiedje J, McGrath J (1998) Biochemical activity of anaerobic microorganisms from buried permafrost sediments, Geomicrobiol J 15: 187–193.

    Article  Google Scholar 

  • Romanovskii NN, Hubberten H-W, Gavrilov AV, Eliseeva AA, Tipenko GS (2005) Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Marine Lett 25: 167–182.

    Article  CAS  Google Scholar 

  • ROSHYDROMET (2004) Russian Federal Service for Hydrometeorology and Environmental Monitoring, http://www.worldweather.org/107/c01040.htm.

  • Schink B, Stams AJM (2006) Syntrophism among Prokaryotes. In Prokaryotes, vol 2. M Dworkin, S Falkow, E Rosenberg, K-H Schleifer, E Stackebrandt (eds.). New York: Springer, pp. 309–335.

    Chapter  Google Scholar 

  • Simankova MV, Kotsyurbenko OR, Lueders T, Nozhevnikova AN, Wagner B, Conrad R, Friedrich MW (2003) Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst Appl Microbiol 26: 312–318.

    Article  PubMed  Google Scholar 

  • Singh N, Kendall MM, Liu Y, Boone DR (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 55: 2531–2538.

    Article  PubMed  CAS  Google Scholar 

  • Shi T, Reevers R, Gilichinsky D, Friedmann EI (1997) Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microbial Ecol 33: 167–179.

    Article  Google Scholar 

  • Shuisong N, Boone D (1998) Extremophilic methanogenic archaea and their adaptation mechanisms. In Extremophiles: Microbial Life in Extreme Environments, K Horikoshi and WD Grant (eds.). New York: Wiley, 211–232.

    Google Scholar 

  • Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Rev 75: 117–124.

    Article  Google Scholar 

  • Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59: 513–523.

    Article  PubMed  CAS  Google Scholar 

  • Van Everdingen R (2005) Multi-language glossary of permafrost and related ground-ice terms. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology.

    Google Scholar 

  • Van Vliet-Lanoë B. (1991) Differential frost heave, load casting and convection: converging mechanisms; a discussion of the origin of cryoturbations. Permafrost Periglac Process 2: 123–139.

    Article  Google Scholar 

  • Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje J (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4: 165–173.

    Article  PubMed  CAS  Google Scholar 

  • Wagner D, Kobabe S, Pfeiffer EM, Hubberten (2003) Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia. Permafrost Periglac Process 14: 173–185.

    Article  Google Scholar 

  • Wagner D, Lipski A, Embacher A, Gattinger A (2005) Methane fluxes in extreme permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ Microbiol 7: 1582–1592.

    Article  PubMed  CAS  Google Scholar 

  • Wagner D, Gattinger A, Embacher A, Pfeiffer EM, Schloter M, Lipski A (2007) Methanogenic activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic and its implication for the global methane budget. Global Change Biol 13: 1089–1099.

    Article  Google Scholar 

  • Wagner D (2008) Microbial communities and processes in Arctic permafrost environments. In Microbiology of extreme soils, Soil Biology, vol. 13., P Dion and CS Nautiyal (eds.). Berlin: Springer, 133–154.

    Chapter  Google Scholar 

  • Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. Prokaryotes 3: 165–207.

    Article  Google Scholar 

  • Yershov ED (1998) General geochryology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Zhang T, Barry RG, Knowles K, Heginbotton JA, Brown J (1999) Statistics and characteristics of permafrost and ground-ice distribution in the northern hemisphere. Polar Geography 23: 132–154.

    Article  Google Scholar 

  • Zimov SA, Schuur EAG, Chapin III FS (2006) Permafrost and the global carbon budget. Science 312: 1612–1613.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Wagner, D., Liebner, S. (2010). Methanogenesis in Arctic Permafrost Habitats. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_52

Download citation

Publish with us

Policies and ethics