Skip to main content

The Beneficial Effects of Increasing Blood Viscosity

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2008))

Abstract

Increased hematocrit above normal levels is usually associated with the elevation of mean systemic arterial blood pressure (MAP) due to increased blood viscosity as shown in studies where hematocrit was increased by 40 % or more above baseline [1, 2]. This effect is related to the behavior of pressure in rigid tubes subjected to constant flow, in the presence of varying viscosity. Clinically and physiologically, this situation is encountered with pathologically high hematocrits [3] and in individuals adapted to high altitude with hematocrit levels of 75–91 % [4]. Moderate hematocrit changes (and, therefore, changes in blood viscosity) due to variability in the normal population do not appear to affect MAP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Richardson TQ, Guyton AC (1959) Effects of polycythemia and anemia on cardiac output and other circulatory factors. Am J Physiol 197:1167–1170

    Google Scholar 

  2. Lindenfeld J, Weil JV, Travis VL, Horwitz LD (2005) Regulation of oxygen delivery during induced polycythemia in exercising dogs. Am J Physiol Heart Circ Physiol 289:H1821–1825

    Article  CAS  PubMed  Google Scholar 

  3. Bertinieri G, Parati G, Ullian L (1998) Hemodilution reduces clinic and ambulatory blood pressure in polycythemic patients. Hypertension 31:848–853

    CAS  PubMed  Google Scholar 

  4. Jefferson JA, Escudero E, Alfaro RT, Schoene RB (2002) Excessive erythrocytosis, chronic mountain sickness, and serum cobalt levels. Lancet 359:407–408

    Article  CAS  PubMed  Google Scholar 

  5. Martini J, Carpentier B, Chavez Negrete A, Frangos JA, Intaglietta M (2005) Paradoxical hypotension following increased hematocrit and blood viscosity. Am J Physiol Heart Circ Physiol 289:H2136–2143

    Article  CAS  PubMed  Google Scholar 

  6. Martini J, Tsai AG, Cabrales P, Johnson PC, Intaglietta M (2006) Increased cardiac output and microvascular blood flow during mild hemoconcentration in hamster window model. Am J Physiol Heart Circ Physiol 291:H310–317

    Article  CAS  PubMed  Google Scholar 

  7. Kuchan MJ, Jo H, Frangos JA (1994) Role of G proteins in shear stress-mediated nitric oxide production by endothelial cells. Am J Physiol 267:C753–C758

    CAS  PubMed  Google Scholar 

  8. Smiesko V, Johnson PC (1993) The arterial lumen is controlled by flow related shear stress. News Physiol Sci 8:34–38

    Google Scholar 

  9. Tsai AG, Acero C, Nance PR, et al (2005) Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. Am J Physiol Heart Circ Physiol 288:H1730–1739

    Article  CAS  PubMed  Google Scholar 

  10. Frangos JA, Eskin SG, McIntire LV, Ives CL (1985) Flow effects on prostacyclin production in cultured human endothelial cells. Science 227:1477–1479

    Article  CAS  PubMed  Google Scholar 

  11. Tsai AG, Friesenecker B, McCarthy M, Sakai H, Intaglietta M (1998) Plasma viscosity regulates capillary perfusion during extreme hemodilution in hamster skin fold model. Am J Physiol 275:H2170–H2180

    CAS  PubMed  Google Scholar 

  12. Cabrales P, Tsai AG, Intaglietta M (2005) Alginate plasma expander maintains perfusion and plasma viscosity during extreme hemodilution. Am J Physiol 288:H1708–1716

    CAS  Google Scholar 

  13. Cabrales P, Tsai AG, Intaglietta M (2004) Microvascular pressure and functional capillary density in extreme hemodilution with low and high plasma viscosity expanders. Am J Physiol 287:H363–H373

    CAS  Google Scholar 

  14. Kerger H, Saltzman DJ, Menger MD, Messmer K, Intaglietta M (1996) Systemic and subcutaneous microvascular pO2 dissociation during 4-h hemorrhagic shock in conscious hamsters. Am J Physiol 270:H827–H836

    CAS  PubMed  Google Scholar 

  15. Tsai AG, Johnson PC, Intaglietta M (2003) Oxygen gradients in the microcirculation. Physiol Rev 83:933–963

    CAS  PubMed  Google Scholar 

  16. Chen RYZ, Carlin RD, Simchon S, Jan K-M, Chien S (1989) Effects of dextran-induced hyperviscosity on regional blood flow and hemodynamics in dogs. Am J Physiol 256:H898–H905

    CAS  PubMed  Google Scholar 

  17. Waschke KF, Krieter H, Hagen G, Albrecht DM, van Ackern K, Kuchinsky W (1994) Lack of dependence of cerebral blood flow on blood viscosity after blood exchange with a Newtonian O2 carrier. J Cereb Blood Flow Metab 14:871–876

    CAS  PubMed  Google Scholar 

  18. Krieter H, Brückner UB, Kafaliakis F, Messmer K (1995) Does colloid induced plasma hyperviscosity in haemodilution jeopardize perfusion and oxygenation of vital organs? Acta Anaest Scand 39:326–244

    Google Scholar 

  19. Doss DN, Estafanous FG, Ferrario CM, Brum JM, Murray PA (1995) Mechanism of systemic vasodilation during normovolemic hemodilution. Anes Analg 81:30–34

    Article  CAS  Google Scholar 

  20. de Wit C, Schäfer C, von Bismark P, Bolz S, Pohl U (1997) Elevation of plasma viscosity induces sustained NO-mediated dilation in the hamster cremaster microcirculation in vivo. Pflügers Arch 434:354–361

    Article  PubMed  Google Scholar 

  21. Cabrales P, Tsai AG, Winslow RM, Intaglietta M (2005) Extreme hemodilution with PEGhemoglobin vs. PEG-albumin. Am J Physiol 289:H2392–2400

    CAS  Google Scholar 

  22. Lipowsky HH, S. U, Chien S (1980) In vivo measurements of apparent viscosity and microvessel hematocrit in the mesentery of the cat. Microvasc Res 19:297–310

    Article  CAS  PubMed  Google Scholar 

  23. Mirhashemi S, Breit GA, Chávez RH, Intaglietta M (1988) Effects of hemodilution on skin microcirculation. Am J Physiol 254:H411–H416

    CAS  PubMed  Google Scholar 

  24. Messmer K (1975) Hemodilution. Surg Clin N Am 55:659–678

    CAS  PubMed  Google Scholar 

  25. Fan FC, Schuessler GB, Chen RYZ, Chien S (1980) Effect of hematocrit alteration on the regional hemodynamics and oxygen transport. Am J Physiol 238:H545–H552

    CAS  PubMed  Google Scholar 

  26. Lipowsky HH, Firrell JC (1986) Microvascular hemodynamics during systemic hemodilution and hemoconcentration. Am J Physiol 250:H908–H922

    CAS  PubMed  Google Scholar 

  27. Messmer K, Kreimeier U, Intaglietta M (1986) Present state of intentional hemodilution. Europ Surg Res 18:254–263

    Article  CAS  Google Scholar 

  28. Buerk DG (2001) Can we model nitric oxide biotransport? A survey of mathematical models for a simple diatomic molecule with surprisingly complex biological activity. Ann Rev Biomed Eng 3:109–143

    Article  CAS  Google Scholar 

  29. Liao JC, Hein TW, Vaughn MW, Huang KT, Kuo L (1999) Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc Natl Acad Sci U S A 96:8757–8761

    Article  CAS  PubMed  Google Scholar 

  30. Rebel A, Lenz C, Krieter H, Waschke KF, Van Ackern K, Kuschinsky W (2001) Oxygen delivery at high blood viscosity and decreased arterial oxygen content to brains of conscious rats. Am J Physiol Heart Circ Physiol 280:H2591–2597

    CAS  PubMed  Google Scholar 

  31. Michelson E (1968) Anaphylactic reaction to dextrans. N Engl J Med 278:552

    CAS  PubMed  Google Scholar 

  32. Ertesvag H, Hoidal HK, Schjerven H, Svanem BI, Valla S (1999) Mannuronan C-5-epimerases and their application for in vitro and in vivo design of new alginates useful in biotechnology. Metab Eng 1:262–269

    Article  CAS  PubMed  Google Scholar 

  33. Ewald RA, Anderson P, Williams HL, Crosby WH (1964) Effects of intravenous infusions of feather keratin: Preliminary characterization and evaluation as a plasma expander. Proc Soc Exp Biol Med 115:130–133

    CAS  PubMed  Google Scholar 

  34. Kerger H, Tsai AG, Saltzman DJ, Winslow RM, Intaglietta M (1997) Fluid resuscitation with O2 vs. non-O2 carriers after 2 h of hemorrhagic shock in conscious hamsters. Am J Physiol 272:H525–H537

    CAS  PubMed  Google Scholar 

  35. Cabrales P, Nacharaju P, Manjula BN, Tsai AG, Acharya SA, Intaglietta M (2005) Early difference in tissue pH and microvascular hemodynamics in hemorrhagic shock resuscitation using polyethylene glycol-albumin-and hydroxyethyl starch-based plasma expanders. Shock 24:66–73

    Article  CAS  PubMed  Google Scholar 

  36. Wettstein R, Erni D, Intaglietta M, Tsai AG (2006) Rapid restoration of microcirculatory blood flow with hyperviscous and hyperoncotic solutions lowers the transfusion trigger in resuscitation from hemorrhagic shock. Shock 25:641–646

    Article  PubMed  Google Scholar 

  37. Cabrales P, Tsai AG, Intaglietta M (2004) Hyperosmotic-hyperoncotic vs. hyperosmotichyperviscous small volume resuscitation in hemorrhagic shock. Shock 22:431–437

    Article  PubMed  Google Scholar 

  38. Wettstein R, Tsai AG, Erni D, Lukyanov AN, Torchilin VP, Intaglietta M (2004) Improving microcirculation is more effective than substitution of red blood cells to correct metabolic disorder in experimental hemorrhagic shock. Shock 21:235–240

    Article  PubMed  Google Scholar 

  39. Cabrales P, Tsai AG, Intaglietta M (2007) Hemorrhagic shock resuscitation with carbon monoxide saturated blood. Resuscitation 72:306–318

    Article  PubMed  Google Scholar 

  40. Hangai-Hoger N, Tsai AG, Cabrales P, Suematsu M, Intaglietta M (2007) Microvascular and systemic effects following top load administration of saturated carbon monoxide-saline solution. Crit Care Med 35:335–237

    Article  Google Scholar 

  41. Cabrales P, Tsai AG, Intaglietta M (2007) Is resuscitation from hemorrhagic shock limited by blood oxygen-carrying capacity or blood viscosity? Shock 27:380–389

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salazar Vázquez, B.Y., Cabrales, P., Intaglietta, M. (2008). The Beneficial Effects of Increasing Blood Viscosity. In: Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77290-3_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77290-3_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77289-7

  • Online ISBN: 978-3-540-77290-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics