Skip to main content

Scalable Simulation of Cellular Signaling Networks

  • Conference paper
Programming Languages and Systems (APLAS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4807))

Included in the following conference series:

Abstract

Given the combinatorial nature of cellular signalling pathways, where biological agents can bind and modify each other in a large number of ways, concurrent or agent-based languages seem particularly suitable for their representation and simulation [1,2,3,4]. Graphical modelling languages such as κ [5, 6, 7, 8], or the closely related BNG language [9,10,11,12,13,14], seem to afford particular ease of expression. It is unclear however how such models can be implemented. Even a simple model of the EGF receptor signalling network can generate more than \(\oldstylenums{10^{23}}\) non-isomorphic species [5], and therefore no approach to simulation based on enumerating species (beforehand, or even on-the-fly) can handle such models without sampling down the number of potential generated species.

We present in this paper a radically different method which does not attempt to count species. The proposed algorothm uses a representation of the system together with a super-approximation of its ‘event horizon’ (all events that may happen next), and a specific correction scheme to obtain exact timings. Being completely local and not based on any kind of enumeration, this algorithm has a per event time cost which is independent of (i) the size of the set of generable species (which can even be infinite), and (ii) independent of the size of the system (ie, the number of agent instances). We show how to refine this algorithm, using concepts derived from the classical notion of causality, so that in addition to the above one also has that the even cost is depending (iii) only logarithmically on the size of the model (ie, the number of rules). Such complexity properties reflect in our implementation which, on a current computer, generates about \(\oldstylenums{10^6}\) events per minute in the case of the simple EGF receptor model mentioned above, using a system with \(\oldstylenums{10^5}\) agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the π-calculus process algebra. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) Pacific Symposium on Biocomputing, vol. 6, pp. 459–470. World Scientific Press, Singapore (2001)

    Google Scholar 

  2. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters (2001)

    Google Scholar 

  3. Regev, A., Shapiro, E.: Cells as computation. Nature 419 (2002)

    Google Scholar 

  4. Regev, A., Panina, E., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: an abstraction for biological compartments. Theoretical Computer Science 325(1), 141–167 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V. (eds.) CONCUR 2007. LNCS, vol. 4703, Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Curien, P.L., Danos, V., Krivine, J., Zhang, M.: Computational self-assembly (submitted, 2007)

    Google Scholar 

  7. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325, 69–110 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Danos, V., Laneve, C.: Core formal molecular biology. In: Degano, P. (ed.) ESOP 2003 and ETAPS 2003. LNCS, vol. 2618, pp. 302–318. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Faeder, J., Blinov, M., Hlavacek, W.: Graphical rule-based representation of signal-transduction networks. In: Proc. ACM Symp. Appl. Computing, pp. 133–140 (2005)

    Google Scholar 

  10. Faeder, J., Blinov, M.B.G., Hlavacek, W.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Complexity 10, 22–41 (2005)

    Article  Google Scholar 

  11. Blinov, M., Yang, J., Faeder, J., Hlavacek, W.: Graph theory for rule-based modeling of biochemical networks. In: BioCONCUR 2005 (2005)

    Google Scholar 

  12. Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S.: Combinatorial complexity and dynamical restriction of network flows in signal transduction. Systems Biology 2(1), 5–15 (2005)

    Article  Google Scholar 

  13. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. BioSystems 83, 136–151 (2006)

    Article  Google Scholar 

  14. Hlavacek, W., Faeder, J., Blinov, M., Posner, R., Hucka, M., Fontana, W.: Rules for Modeling Signal-Transduction Systems. Science’s STKE 2006(344) (2006)

    Google Scholar 

  15. Kiyatkin, A., Aksamitiene, E., Markevich, N., Borisov, N., Hoek, J., Kholodenko, B.: Scaffolding Protein Grb2-associated Binder 1 Sustains Epidermal Growth Factor-induced Mitogenic and Survival Signaling by Multiple Positive Feedback Loops. Journal of Biological Chemistry 281(29) (2006)

    Google Scholar 

  16. Aldridge, B., Burke, J., Lauffenburger, D., Sorger, P.: Physicochemical modelling of cell signalling pathways. Nat. Cell. Biol. 8, 1195–1203 (2006)

    Article  Google Scholar 

  17. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  18. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the Pacific Symposium on Biocomputing, pp. 400–412 (2002)

    Google Scholar 

  19. Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)

    Google Scholar 

  20. Danos, V., Krivine, J.: Formal molecular biology done in CCS. In: Proceedings of BIO-CONCUR 2003, Marseille, France. Electronic Notes in Theoretical Computer Science, vol. 180, pp. 31–49. Elsevier, Amsterdam (2003)

    Google Scholar 

  21. Cardelli, L.: Brane calculi. In: BIO-CONCUR 2003, Marseille, France. Electronic Notes in Theoretical Computer Science, vol. 180, Elsevier, Amsterdam (2003)

    Google Scholar 

  22. Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Nielson, H.R. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Pawson, T., Nash, P.: Assembly of Cell Regulatory Systems Through Protein Interaction Domains. Science 300, 445–452 (2003)

    Article  Google Scholar 

  24. Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in the stochastic pi-calculus. In: Proceedings of CMSB 2007. LNCS(LNBI), vol. 4695, Springer, Heidelberg (2007)

    Google Scholar 

  25. Degano, P., Prandi, D., Priami, C., Quaglia, P.: Beta-binders for biological quantitative experiments. In: Proceedings of QAPL. ENTCS, vol. 164, pp. 101–117 (2006)

    Google Scholar 

  26. Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comp. Phys. 17, 10–18 (1975)

    Article  Google Scholar 

  27. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem 81, 2340–2361 (1977)

    Article  Google Scholar 

  28. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  29. Berry, G., Lévy, J.J.: Minimal and optimal computation of recursive programs. JACM 26, 148–175 (1979)

    Article  MATH  Google Scholar 

  30. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains. Theoretical Computer Science 13, 85–108 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  31. Darondeau, P., Degano, P.: Causal trees. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) Automata, Languages and Programming. LNCS, vol. 372, pp. 234–248. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  32. Winskel, G.: Event structure semantics for CCS and related languages. In: Nielsen, M., Schmidt, E.M. (eds.) Automata, Languages, and Programming. LNCS, vol. 140, pp. 561–576. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  33. Boudol, G., Castellani, I.: Permutation of transitions: An event structure semantics for CCS and SCCS. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, pp. 411–427. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  34. Boreale, M., Sangiorgi, D.: A fully abstract semantics for causality in the π-calculus. Acta Inf. 35, 353–400 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Degano, P., Priami, C.: Non-interleaving semantics for mobile processes. Theoretical Computer Science 216(1-2), 237–270 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  36. Baldi, C., Degano, P., Priami, C.: Causal π-calculus for biochemical modeling. In: Proceedings of the AI*IA Workshop on BioInformatics 2002, pp. 69–72 (2002)

    Google Scholar 

  37. Curti, M., Degano, P., Priami, C., Baldari, C.T.: Modelling biochemical pathways through enhanced π-calculus. Theor. Comp. Sci. 325, 111–140 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)

    Google Scholar 

  39. Morton-Firth, C.J.: Stochastic simulation of cell signalling pathways. PhD thesis, Cambridge (1998)

    Google Scholar 

  40. Mjolsness, E., Yosiphon, G.: Stochastic process semantics for dynamical grammars. Annals of Mathematics and Artificial Intelligence (2007)

    Google Scholar 

  41. Giavitto, J.L., Michel, O.: MGS: a programming language for the transformations of topological collections. Technical Report 61-2001, LaMI (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zhong Shao

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danos, V., Feret, J., Fontana, W., Krivine, J. (2007). Scalable Simulation of Cellular Signaling Networks. In: Shao, Z. (eds) Programming Languages and Systems. APLAS 2007. Lecture Notes in Computer Science, vol 4807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76637-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76637-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76636-0

  • Online ISBN: 978-3-540-76637-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics