Skip to main content

Fanconi Syndrome

  • Reference work entry
Pediatric Nephrology

Abstract

Fanconi syndrome (FS) is a generalized dysfunction of the renal proximal tubules leading to excessive urinary wasting of amino acids, glucose, phosphate, uric acid, bicarbonate, and other solutes. The patients develop failure to thrive, polyuria, polydipsia, dehydration, and rickets in children, and osteoporosis and osteomalacia in adults. The patients also manifest renal salt wasting, hypokalemia, metabolic acidosis, hypercalciuria, and low-molecular-weight (LMW) proteinuria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 369.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Toni G. Remarks on the relations between renal and rickets (renal dwarfism) and renal diabetes. Acta Paediatr 1933;16:479–484.

    Article  Google Scholar 

  2. Debré R, Marie J, Cléret F et al. Rachitisme tradif coexistànt avec une nephrite chronique et une glycosurie. Arch Med Enf 1934;37:597–606.

    Google Scholar 

  3. Fanconi G. Die nichit diabeteishen glykosurien und hyperglykamien des altern kinds. Jahrb Kinderheilkd 193;133:257–300.

    Google Scholar 

  4. Marshansky V, Bourgoin S, Londino I et al. Receptor-mediated endocytosis in kidney proximal tubules; recent advances and hypothesis. Electrophoresis 1997;18:2661–2676.

    Article  PubMed  CAS  Google Scholar 

  5. Brown D, Stow JL. Protein trafficking and polarity in kidney epithelium; from cell biology to physiology. Physiol Rev 1996;76:245–297.

    PubMed  CAS  Google Scholar 

  6. Herak-Kramberger CM, Stow JL. Protein trafficking and polarity in kidney vacuolar H+-ATPase and endocytosis in rat cortex. Kidney Int 1998;53:1713–1726.

    Article  PubMed  CAS  Google Scholar 

  7. Marshansky V, Richard M, Bartle J et al. Regulation of renal albumin reabsorption by endosomal proton transport [Abstract]. J Am Soc Nephrol 1996;7:1311.

    Google Scholar 

  8. Lloyd SE, Pearce SH, Fisher SE et al. A common molecular basis for three inherited kidney stone diseases. Nature 1996;379:3445–3449.

    Article  Google Scholar 

  9. Norden AGW, Lapsley M, Igarashi T et al. Urinary megalin deficiency implicates abnormal tubular endocytotic function in Fanconi syndrome. J Am Soc Nephrol 2002;13:123–133.

    Google Scholar 

  10. Sakarcan A. The Fanconi syndrome of cystinosis: insights into the pathophysiology. Tur J Pediatr 2002;44:279–282.

    Google Scholar 

  11. Rech VC, Athaydes GA, Feksa LR et al. Inhibition of creatine kinase activity by cysine in the kidney of young rats. Pediatr Res 2006;60:190–195.

    Article  PubMed  CAS  Google Scholar 

  12. Niaudet P, Rötig A. The kidney in mitochondrial cytopathies. Kidney Int 1997;51:1000–1007.

    Article  PubMed  CAS  Google Scholar 

  13. Hawkins E, Brewer E. Renal toxicity induced by valproic acid (Depaken). Pediatr Pathol 1993;13:863–868.

    Article  PubMed  CAS  Google Scholar 

  14. Magen D, Sprecher E, Zelikovic I et al. A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal-recessive renal glucosuria and aminoaciduria. Kideny Int 2005;67:34–41.

    Article  CAS  Google Scholar 

  15. Bingham C, Ellard S, Cheret C et al. The generalized amonoaciduria seen in patients with hepatocyte nuclear factor-1 alpha mutation is a feature of all patients with diabetes and is associated with glucosuria. Diabetes 2001;50:2047–2052.

    Article  PubMed  CAS  Google Scholar 

  16. Tokaymat A, Sakarcan A, Neiberger R. Idiopathic Fanconi syndrome in a family. I. Clinical aspects. J Am Soc Nephrol 1992;2:1310–1317.

    Google Scholar 

  17. Haffner D, Weinfurth A, Seidel C et al. Body growth in primary de Toni-Debré-Fanconi syndrome. Pediatr Nephrol 1997;11:40–45.

    Article  PubMed  CAS  Google Scholar 

  18. Flyvbjerg A, Dørup I, Everts ME et al. Evidence that potassium deficiency induces growth retardation through reduced circulating levels of growth hormone and insulin-like growth factor I. Metabolism 1991;40:769–775.

    Article  PubMed  CAS  Google Scholar 

  19. Tsao T, Fawcett J, Fervenzas FC et al. Expression of insulin-like growth factor-I and transforming growth factor-beta in hypokalemic nephropathy in the rat. Kidney Int 2001;59:96–105.

    Article  PubMed  CAS  Google Scholar 

  20. Brünger M, Hutler HN, Krapf R. Effect of chronic metabolic acidosis on the growth hormone/IGF-I endocrine axis: new cause of growth hormone insensitivity in humans. Kidney Int 1997;51:216–221.

    Article  Google Scholar 

  21. Hsu SY, Tsai IJ, Tsau YK. Comparison of growth in primary Fanconi syndrome and proximal renal tubular acidosis. Pediatr Nephrol 2005;20:460–464.

    Article  PubMed  Google Scholar 

  22. Tsilchorozidou T, Yovos JG. Hypophosphataemic osteomalacia due to de Toni-Debré-Fanconi syndrome in a 42-year old girl. Hormones (Athens) 2005;4:171–176.

    Google Scholar 

  23. Urabe Y, Tagami T, Suwabe T et al. A patient with symptomatic osteomalacia associated with Fanconi syndrome. Mod Rheumatol 2005;15:207–212.

    Article  Google Scholar 

  24. Morisaki I, Abe K, Sobue S. Orofacial manifestations in a child with Fanconi’s syndrome. Oral Surg Oral Med Oral Pathol 1989;68:171–174.

    Article  PubMed  CAS  Google Scholar 

  25. Armando N. Proximal tubule endocytic apparatus as the specific renal uptake mechanism for vitamin D binding protein/25-(OH) D3 complex. Nephrology 2006;11:510–515.

    Article  CAS  Google Scholar 

  26. Gahl WA. Cysitinosis coming of age. Adv Pediatr 1986;33:95–126.

    PubMed  CAS  Google Scholar 

  27. Deshpande P, Ali U. Primary Fanconi syndrome. Ind Pediatr 1997;34:547–549.

    CAS  Google Scholar 

  28. Brewer ED, Tsai HC, Norris RC. Evidence for impairment of metabolism of 25-hydroxyvitamin D3, in children with Fanconi syndrome. Clin Res 1976;24:154A.

    Google Scholar 

  29. Scheinman SJ. X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutation. Kidney Int 1998;53:2–17.

    Article  Google Scholar 

  30. Kaunisto K, Parkkila S, Rajaniemi H et al. Carbonic anhydrase XIV: Luminal expression suggests key role in renal acidification. Kidney Int 2002;61:2111–2118.

    Article  PubMed  CAS  Google Scholar 

  31. Levinson DJ, Sorensen LB. Renal handling of uric acid in normal and gouty subject: Evidence for a 4-component system. Ann Rheum Dis 1980;39:173–179.

    Article  PubMed  CAS  Google Scholar 

  32. Meisel AD, Diamond HS. Hyperuricosuria in the Fanconi syndrome. Am J Med Sci 1977;273:109–115.

    Article  PubMed  CAS  Google Scholar 

  33. Roch-Ramel F, Guisan B, Diezi J. Effects of uricosuric and antiuricosuric agents on urate transport in human brush-border membrane vesicles. J Pharmacol Exp Ther 1997;280:839–845.

    PubMed  CAS  Google Scholar 

  34. Enomoto A, Kimura H, Chairoungdua A et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002;417:447–452.

    PubMed  CAS  Google Scholar 

  35. Ohta T, Sakano T, Igarashi T et al. Exercise-induced acute renal failure associated with renal hypouricemia: Results of a questionnaire-based survey in Japan. Nephrol Dial Transplant 2004;19:1447–1453.

    Article  PubMed  Google Scholar 

  36. Viart V, Rudan I, Hayward C et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nature Genet 2008;40:437–442.

    Article  CAS  Google Scholar 

  37. Becker BF. Towards the physiological function of uric acid. Free Rad Biol Med 1993;14:615–631.

    Article  PubMed  CAS  Google Scholar 

  38. Norden AGW, Sharratt P, Cutillas PR et al. Quantitative amino acid and proteomic analysis: Very low excretion of polypeptides >750 Da in normal urine. Kidney Int 2004;66:1994–2003.

    Article  PubMed  CAS  Google Scholar 

  39. Maack T. Renal handling of proteins and polypeptides. In Handbook of Physiology. Renal Physiology, Windhager EE (ed.). New York, Oxford University Press, 1992, pp. 2039–2082.

    Google Scholar 

  40. Birn H, Fyfe JC, Jacobsen C et al. Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. J Clin Invest 2000;105:1353–1361.

    Article  PubMed  CAS  Google Scholar 

  41. Birn H, Christensen EI. Renal albumin absorption in physiology and pathology. Kidney Int 2006;69:440–449.

    Article  PubMed  CAS  Google Scholar 

  42. Dent CE, Friedman M. Hypercalciuric rickets associated with renal tubular change. Arch Dis Child 1964;39:240–249.

    Article  PubMed  CAS  Google Scholar 

  43. Wrong OM, Norden AG, Freest TG et al. Dent’s disease; a familial renal tubular syndrome with low-molecular weight proteinuria, hypercalciuria, nephroclcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 1994;87:473–493.

    PubMed  CAS  Google Scholar 

  44. Hodgin JB, Corey HE, Kaplan BS et al. Dent disease presenting as partial Fanconi syndrome and hypercalciuria. Kidney Int 2008; 73:1320–1323.

    Google Scholar 

  45. Suzuki Y, Okada T, Higuchi A et al. The low molecular weight of protein components in children urine. Acta Peadiatr Jpn 1980;22:1–5.

    Article  CAS  Google Scholar 

  46. Igarashi T, Hayakawa H, Shiraga H et al. Hypercalciuria and nephrocalcinosis in patients with idiopathic low-molecular-weight proteinuria in Japan: Is the disease identical to Dent’s disease in United Kingdom? Nephron 1995;69:242–247.

    Article  PubMed  CAS  Google Scholar 

  47. Lloyd SE, Pearce SHS, Gunter H et al. Idiopathic low molecular weight proteinuria associated with hypercalciuria, nephrocalcinosis in Japanese children is due to mutations of the renal chloride channel (CLCN5). J Clin Invest 1997;99:967–974.

    Article  PubMed  CAS  Google Scholar 

  48. Akuta N, Lloyd SE, Igarashi T et al. Mutations of CLCN5 in Japanese children with idiopathic low molecular weight proteinuria, hypercalciuria and nephrocalcinosis. Kidney Int 1997;52:911–916.

    Article  PubMed  CAS  Google Scholar 

  49. Igarashi T, Inatomi J, Ohara T et al. Clinical and genetic studies of CLCN5 mutations in Japanese families with Dent’s disease. Kidney Int 2000;58:520–527.

    Article  PubMed  CAS  Google Scholar 

  50. Jentsch TJ, Poet M, Furhmann JK et al. Physiological functions of ClC Cl channels gleaned from human genetic disease and mouse models. Annu Rev Physiol 2005;67:779–807.

    Article  PubMed  CAS  Google Scholar 

  51. Moulin P, Igarashi T, Smissen P van der et al. Altered polarity and expression of H+-ATPase without ultrastructural changes in kidneys of Dent’s disease patients. Kidney Int 2003;63:1285–1295.

    Article  PubMed  CAS  Google Scholar 

  52. Frymoyer SC, Scheinman SJ, Dunham PB et al. X-linked recessive nephrolithiasis with renal failure. N Engl J Med 1991;325:681–686.

    Article  PubMed  CAS  Google Scholar 

  53. Norden AGW, Scheinman SJ, Deschodt-Lanckman MM et al. Tubular proteinuria defined by a study of Dent’s (CLCN5 mutation) and other tubular diseases. Kidney Int 2000;57:240–249.

    Article  PubMed  CAS  Google Scholar 

  54. Scheinman SJ. X-linked hypercalciuric nephrolithiasis: Clinical syndromes and chloride channel mutations. Kidney Int 1998;53:3–17.

    Article  PubMed  CAS  Google Scholar 

  55. Ludwig M, Utsch B, Balluch B et al. Hypercalciuria in patients with CLCN5 mutations. Pediatr Nephrol 2006;21:1241–1250.

    Article  PubMed  Google Scholar 

  56. Gailly P, Jouret F, Martin D et al. A novel renal carbonic anhydrase type III plays a role in proximal tubule dysfunction. Kidney Int 2008; 74:52–61.

    Google Scholar 

  57. Carr G, Simmons NL, Sayer JA et al. Disruption of clc-5 leads to redistribution of annexin A2 and promotes calcium crystal agglomeration in collecting duct epithelial cells. Cell Mol Life Sci 2006;63:367–377.

    Article  PubMed  CAS  Google Scholar 

  58. Norden AGW, Lapsley M, Lee PJ et al. Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int 2001;60:1885–1892.

    Article  PubMed  CAS  Google Scholar 

  59. Hoopes RR Jr., Raja KM, Koich A et al. Evidence for genetic heterogeneity in Dent’s disease. Kidney Int 2004;65:1615–1620.

    Article  PubMed  CAS  Google Scholar 

  60. Raja KA, Schurman S, D’Mello et al. Responsiveness of hypercalciuria to thiazide in Dent’s disease. J Am Soc Nephrol 2002;13:2938–2944.

    Article  PubMed  Google Scholar 

  61. Cebotaru V, Kaul S, Devuyst O et al. High citrate diet delays progression of renal insufficiency in the ClC-5 knockout mouse model of Dent’s disease. Kidney Int 2005;68:642–652.

    Article  PubMed  CAS  Google Scholar 

  62. Guggino SE. Mechanism of disease: What can mouse models tell us about the molecular process underlying Dent disease? Nat Clin Pract Nephrol 2007;3:449–455.

    Article  PubMed  CAS  Google Scholar 

  63. Copelvitch L, Nash MA, Kaplan BS. Hypothesis: Dent disease is an underrecognized cause of focal glomerulosclerosis. Clin J Am Soc Nephrol 2007;2:914–918.

    Article  CAS  Google Scholar 

  64. Lowe CU, Terrey M, MacLachlan EA. Organic aciduria, decreased renal ammonia production, hydrophthalmos and mental retardation: A clinical entity. Am J Dis Child 1952;83:164–184.

    CAS  Google Scholar 

  65. Lin T, Lewis RA, Nussbaum RI. Molecular confirmation of carriers of Lowe syndrome. Ophthalmology 1999;106:119–122.

    Article  PubMed  CAS  Google Scholar 

  66. Charnas LR, Bernardini I, Rader D et al. Clinical and laboratory findings in the oculocerebrorenal syndrome of Lowe, with special reference to growth and renal function. N Engl J Med 1991;324:1318–1325.

    Article  PubMed  CAS  Google Scholar 

  67. Laube G, Russel-Egitt I, van’t Hoff W. Early proximal tubular dysfunction in Lowe’s syndrome. Arch Dis Child 2004;89:479–480.

    Article  PubMed  CAS  Google Scholar 

  68. Attree O, Olivos IM, Okabe I et al. The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 1992;358:239–242.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang X, Jefferson AB, Auethavekiat V et al. The protein deficient in Lowe syndrome is a phosphatidylinositol 4,5-bisphosphate 5-Phosphatase. Proc Natl Acad Sci USA 1995;92:4853–4856.

    Article  PubMed  CAS  Google Scholar 

  70. Lin T, Orrison BM, Leahey AM et al. Spectrum of mutations in the OCRL1 gene in the Lowe oculocerebrorenal syndrome. Am J Hum Genet 1997;60:1384–1388.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang X, Hartz PA, Philip E et al. Cell lines from kidney proximal tubules of a patient with Lowe syndrome lacks OCRL inositol polyphosphate 5-phosphatase and accumulate phosphatidylinositol 4,5-bisphosphate. J Biol Chem 1998;273:1574–1582.

    Article  PubMed  CAS  Google Scholar 

  72. Suchy SF, Nussbaum RL. The deficiency of PIP2 5-phosphatased in Lowe syndrome affects actin polymerization. Am J Hum Genet 2002;71:1420–1427.

    Article  PubMed  CAS  Google Scholar 

  73. Ungewickell A, Ward M, Ungewickell E et al. The inositol polyphosphate 5-phosphatase Ocrl associates with endosome that are partially coated with clathrin. Proc Natl Acad Sci USA 2004;101:13501–13506.

    Article  PubMed  CAS  Google Scholar 

  74. Lowe M. Structure and function of Lowe syndrome protein. Traffic 2005;6:711–719.

    Article  PubMed  CAS  Google Scholar 

  75. Erdmann KS, Mao Y, McCrea HJ et al. A role of Lowe syndrome protein OCRL in early steps of the endocytotic pathway. Dev Cell 2007;13:377–390.

    Article  PubMed  CAS  Google Scholar 

  76. Faucherre A, Desbois P, Satre V et al. Lowe syndrome protein OCRL interacts with Rac GTPase in the trans-Golgi network. Hum Mol Genet 2003;12:2449–2456.

    Article  PubMed  CAS  Google Scholar 

  77. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 1985;54:1015–1069.

    Article  PubMed  CAS  Google Scholar 

  78. Clayton DA. Structure and function of the mitochondrial genome. J Inherit Metab Dis 1992;15:439–447.

    Article  PubMed  CAS  Google Scholar 

  79. DiMauro S, Bonilla E, Lombes A et al. Mitochondrial encephalomyopathies. Neurol Clin 1990;8:483–506.

    PubMed  CAS  Google Scholar 

  80. Niaudet P. Mitochondrial disorders and the kidney. Arch Dis Child 1998;78:387–390.

    Article  PubMed  CAS  Google Scholar 

  81. Ueda Y, Ando A, Nagata T et al. A boy with mitochondrial disease: Asymptomatic proteinuria without neuromyopathy. Pediatr Nephrol 2004;19:107–110.

    Article  PubMed  Google Scholar 

  82. Morris AA, Taylor RW, Birchi-Marchin MA et al. Neonatal Fanconi syndrome due to deficiency of complex III of the respiratory chain. Pediatr Nephrol 1995;9:407–411.

    Article  PubMed  CAS  Google Scholar 

  83. Kuwertz-Broking E, Koch HG, Marquardt T et al. Renal Fanconi syndrome: First sign of partial respiratory chain complex IV deficiency. Pediatr Nephrol 2000;14:495–498.

    Article  PubMed  CAS  Google Scholar 

  84. Au KM, Lau SC, Mak YF et al. Mitochondrial DNA deletion in a girl with Fanconi syndrome. Pediatr Nephrol 2007;22:136–140.

    Article  PubMed  Google Scholar 

  85. Tzen CY, Tsai JD, Wu TY et al. Tubulointerstitial nephritis associated with a novel mitochondrial point mutation. Kidney Int 2001;59:846–854.

    Article  PubMed  CAS  Google Scholar 

  86. Szabolcs MJ, Seigle R, Shanske S et al. Mitochondrial DNA deletion: A cause of chronic tubulointerstitial nephropathy. Kidney Int 1994;45:1388–1396.

    Article  PubMed  CAS  Google Scholar 

  87. Mochizuki H, Joh K, Kawame H et al. Mitochondrial encephalomyopathies preceded by de Toni-Debré-Fanconi syndrome or focal segmental glomerulosclerosis. Clin Nephrol 1996;46:347–352.

    PubMed  CAS  Google Scholar 

  88. Gucer S, Talim B, Asan E et al. Focal segmental glomerulosclerosis associated with mitochondrial cytopathy: Report of two cases with special emphasis on podocytes. Pediatr Dev Pathol 2005;8:710–717.

    Article  PubMed  Google Scholar 

  89. Hotta O, Inoue CN, Miyabayashi S et al. Clinical and pathologic features of focal segmental glomerulosclerosis with mitochondrial tRNALeu(UUR) gene mutation. Kidney Int 2001;59:1236–1243.

    Article  PubMed  CAS  Google Scholar 

  90. Barisoni L, Diomedi-Camassei F, Santorelli FM et al. Collapsing glomerulopathy associated with inherited mitochondrial injury. Kindey Inter 2008;74:237–243.

    Google Scholar 

  91. Lopez LC, Schuelke M, Quinzii CM et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphophate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet 2006;79:1125–1129.

    Article  PubMed  CAS  Google Scholar 

  92. Niaudet P, Heidet L, Munnich A et al. Deletion of the mitochondrial DNA in a case of de Toni-Debré-Fanconi syndrome and Pearson syndrome. Pediatr Nephrol 1994;8:164–168.

    Article  PubMed  CAS  Google Scholar 

  93. Zaffanello M, Zamboni G. Therapeutic approach in a case of Pearson’s syndrome. Minerva Pediatr 2005;57:143–146.

    PubMed  CAS  Google Scholar 

  94. Matsutani H, Mizusawa Y, Shimoda M et al. Partial deficiency of cytochrome c oxidase with isolated proximal renal tubular acidosis and hypercalciuria. Clin Nephrol Urol 1992;12:221–224.

    CAS  Google Scholar 

  95. Goto Y, Itami N, Kajii N et al. Renal tubular involvement mimicking Bartter syndrome in a patient with Kearn-Sayre syndrome. J Pediatr 1990;116:904–910.

    Article  PubMed  CAS  Google Scholar 

  96. Moraes CT, Shanske S, Trischler HJ et al. Mitochondrial DNA depletion with variable tissue expression: A novel genetic abnormality in mitochondrial disease. Am J Hum Genet 1991;48:492–501.

    PubMed  CAS  Google Scholar 

  97. Gilber RD, Emms M. Pearson’s syndrome presenting with Fanconi syndrome. Ultrastruct Pathol 1996;20:473–475.

    Article  Google Scholar 

  98. Gahl WA, Thoene JG, Schneidel JA. Cystinosis. N Engl J Med 2003;347:111–121.

    Article  Google Scholar 

  99. van’t Hoff WG, Ledermann SE, Waldron M et al. Early-onset chronic renal failure as a presentation of infantile nephropathy cystinosis. Pediatr Nephrol 1995;9:483–484.

    Article  PubMed  Google Scholar 

  100. Pennesi M, Marchetti F, Crovella S et al. A new mutation in two siblings with cystionosis presenting with Bartter syndrome. Pediatr Nephrol 2005;20:217–219.

    Article  PubMed  Google Scholar 

  101. Yildiz B, Durmus-Aydogdu S, Kural N et al. A patient with cystinosis presenting transient features of Bartter syndrome. Turk J Pediatr 2006;48:260–262.

    PubMed  Google Scholar 

  102. Theodoropolos DS, Shawker TH, Heinrichs C et al. Medullary nephrocalcinosis in nephropathic cystinosis. Pediatr Nephrol 1995;9:412–418.

    Article  Google Scholar 

  103. Gubler MC, Lacoste M, Sich M et al. The pathology of the Kidney in Cystinosis. Paris, France, Elsevier, 1999.

    Google Scholar 

  104. Servais A, Moriniere V, Grünfeld JP et al. Late onset nephropathic cystinosis: Clinical presentation, outcome, and genotyping. Clin J Am Soc Nephrol 2008;3:27–35.

    Article  PubMed  Google Scholar 

  105. Town M, Jean G, Cherqui S et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nature Get 1998;18:319–324.

    CAS  Google Scholar 

  106. Anikster Y, Lucero C, Guo J et al. Ocular nonnephropathic cystinosis: Clinical, biochemical, and molecular correlations. Pediatr Res 2000;47:17–23.

    Article  PubMed  CAS  Google Scholar 

  107. Cherqui S, Sevin C, Hamard G et al. Intralysosomal cystine accumulation in mice lacking cystinosis, the protein defective in cystinosis. Mol Cell Biol 2002;22:7622–7632.

    Article  PubMed  CAS  Google Scholar 

  108. Cerinkys I, Schlatter E, Hirsch JR et al. Inhibition of Na+-dependent transporters in cystine-loaded human renal cells: Electrophysiological studies on the Fanconi syndrome. J Am Soc Nephrol 2002;13:2085–2093.

    Article  CAS  Google Scholar 

  109. Park MA, Thoene JG. Potential role of apoptosis in development of the cystinotic phenotype. Pediatr Nephrol 2005;20:441–446.

    Article  PubMed  Google Scholar 

  110. Wilmer MJ, de Graaf-Hess A, Blom HJ et al. Elevated oxidative glutathione in cystinotic proximal tubular epithelial cells. Biochem biophys Res Commun 2005;337:610–614.

    Article  PubMed  CAS  Google Scholar 

  111. Bonsib SM, Horvth F Jr. Multinucleated podocytes in a child with nephrotic syndrome and Fanconi’s syndrome: A unique clue to the diagnosis. Am J Kidney Dis 1999;34:966–971.

    Article  PubMed  CAS  Google Scholar 

  112. Spear GS, Slusser RJ, Tousimis AJ et al. Cystinosis. An ultrastructural and electron-probe study of the kidney with unusual findings. Arch Pathol 1971;91:206–221.

    PubMed  CAS  Google Scholar 

  113. Kleta R, Gahl WA. Pharmacological treatment of nephropathic cystinosis with cysteamine. Expet Opin Pharmacother 2004;5:2255–2262.

    Article  CAS  Google Scholar 

  114. Gahl WA, Kuehl EM, Iwata F et al. Corneal crystals in nephropathic cystinosis: natural history and treatment with cysteamine eye drops. Mol Genet Metab 2000;71:100–120.

    Article  PubMed  CAS  Google Scholar 

  115. Kleigman RM, Sparks JW. Perinatal galctose metabolism. J Pediatr 1985;107:831–841.

    Article  Google Scholar 

  116. Tyfield L, Reichardt J, Fridovich-Keil J et al. Classical galactosemia and mutation at the galactose-1-uridyl transferase (GALT) gene. Human Mutat 1999;13:417–430.

    Article  CAS  Google Scholar 

  117. Waggoner DD, Buist NRM, Donnel GN et al. Long-term prognosis in galactosemia: Results in a survey of 350 cases. J Inherit Metab Dis 1990;13:802–818.

    Article  PubMed  CAS  Google Scholar 

  118. Waggoner DD, Buist NRM. Long-term complications in treated galactsemia-175 U.S. cases. Int Pediatr 1993;8:97–199.

    Google Scholar 

  119. Ascota PB, Gross KC. Hidden sources of galactose in the environment. EurJ Pediatr 1995;154:S87–S92.

    Article  Google Scholar 

  120. Berry GT, Palmieri M, Gross KC et al. The effect of dietary fruits and vegetables on urinary galactitol excretion in galactose-1-phosphate uridyltransferase deficiency. J Inherit Metab Dis 1993;16:91–100.

    Article  PubMed  CAS  Google Scholar 

  121. Berry GT, Mate PJ, Reynold RA. The rate of de novo galactose synthesis in patients with galactose-1-phosphate uridyltransferase deficiency. Mol Genet Metab 2004;81:22–30.

    Article  PubMed  CAS  Google Scholar 

  122. Berry GT, Nissim I, Lin Z et al. Endogenous synthesis of galactose in normal men and patients with hereditary galactosemia. Lancet 1995;346:1073–1074.

    Article  PubMed  CAS  Google Scholar 

  123. Gitzelmann R, Wells HJ, Segal S. Galactose metabolism in a patient with hereditary galactokinase deficiency. Eur J Clin Invest 1974;4:79–84.

    PubMed  CAS  Google Scholar 

  124. Gitzelmann R. Additional findings in galactokinase deficiency. J Pediatr 1975;87:1007–1008.

    Article  PubMed  CAS  Google Scholar 

  125. Slepak TI, Tang M, Slepak VZ et al. Involvement of endoplasmic reticulum stress in a novel classic galactosemia model. Mol Genet Met 2007;92:78–87.

    Article  CAS  Google Scholar 

  126. Lai KW, Cheng LY, Choung AL et al. Inhibitor of apoptosis proteins and ovarian dysfunction in galactosemic rats. Cell Tissue Res 2003;311:417–425.

    PubMed  CAS  Google Scholar 

  127. Chung MA. Galactosemia in infancy: Diagnosis, management, and prognosis. Pediatr Nurs 1997;23:563–469.

    PubMed  CAS  Google Scholar 

  128. Ali M, Rellos P, Cox TM. Hereditary fructose intolerance. J Med Genet 1998;35:353–365.

    Article  PubMed  CAS  Google Scholar 

  129. Rottmann WH, Tolan DR, Penhoet EE. Complete amino acid sequence for human aldolase B derived from cDNA and genomic clones. Proc Natl Acad Sci USA 1984;81:2738–2742.

    Article  PubMed  CAS  Google Scholar 

  130. Mukai T, Yatsuki H, Joh K et al. Human aldolase b gene: Characterization of the genomic aldolase B gene and analysis of sequences required for multiple polyadenylations. J Biochem 1987;102:1043–1051.

    PubMed  CAS  Google Scholar 

  131. Esposito G, Vitagliano L, Santamaria R et al. Structural and functional analysis of aldolase B mutants related to hereditary fructose intolerance. FEBS Lett 2002;531:152–156.

    Article  PubMed  CAS  Google Scholar 

  132. Cross NC, Cox TM. Hereditary fructose intolerance. Int J Biochem 1990;22:685–689.

    Article  PubMed  CAS  Google Scholar 

  133. Morris RC Jr. An experimental renal acidification defect in patients with hereditary fructose intolerance: I. Its resemblance to renal tubular acidosis. J Clin Invest 1967;47:1389–1398.

    Article  Google Scholar 

  134. Morris RC Jr. An experimental renal acidification defect in patients with hereditary fructose intolerance: II. Its distinction from classic renal acidosis and its resemblance to the renal acidification defect associated with the Fanconi syndrome of children with cystinosis. J Clin Invest 1968;47:1648–1663.

    Article  PubMed  Google Scholar 

  135. Richardson RMA, Little JA, Pattern RL et al. Pathogenesis of acidosis in hereditary fructose intolerance. Metabolism 1979;28:1133–1138.

    Article  PubMed  CAS  Google Scholar 

  136. Levin B, Snodgrass GLAI, Oberholzer VG et al. Fructosemia. Observations in seven cases. Am J Med 1968;45:826–838.

    Article  PubMed  CAS  Google Scholar 

  137. Lu M, Holliday LS, Zhang L et al. Interaction between aldolase and vacuolar H+-ATPase: Evidence for direct coupling of glycolysis to the ATP-hydrolyzing proton pump. J Biol Chem 2001;276:30407–30413.

    Article  PubMed  CAS  Google Scholar 

  138. Steinmann B, Gitzelmann R. The diagnosis of hereditary fructose intolerance. Helv Paediatr Acta 1981;36:297–316.

    PubMed  CAS  Google Scholar 

  139. Müller P, Meier C, Böhme HJ et al. Fructose breath hydrogen test- is it really a harmless diagnostic procedure? Dig Dis 2003;21:276–278.

    Article  PubMed  Google Scholar 

  140. Chou JY, Matern D, Mansfield BC et al. Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Curr Mol Med 2002;2:121–143.

    Article  PubMed  CAS  Google Scholar 

  141. von Gierke E. Hepato-nephro-megalia glycogenica (Glykogenespecicher-krankheit der Lber und Nieren). Beitr Pathol Anat 1929;82:497–513.

    Google Scholar 

  142. Kim Sy, Vhen Ly, Yiu WH et al. Neutrophilia and elevated serum cytokines are implicated in glycogen storage disease type Ia. FEBS Lett 2007;581:3833–3838.

    Article  PubMed  CAS  Google Scholar 

  143. Rocco Di, Calevo MG, Taro’s M et al. Hepatocellular adenoma and metabolic balance in patients with type Ia glycogen storage disease. Mol Genet Metab 2008;93:398–401.

    Article  PubMed  CAS  Google Scholar 

  144. Reddy SK, Kishnani PS, Sullivan JA et al. Resection of hepatocellular adenoma in patients with glycogen storage disease type Ia. J Hepatol 2007;47:658–663.

    Article  PubMed  CAS  Google Scholar 

  145. Reitsma-Bierens WCC. Renal complications in glycogen storage disease type I. Eur J Pediatr 1993;152:S60–S62.

    Article  PubMed  Google Scholar 

  146. Hers HG, van Hoof F, de Barsy T. Glycogen storage disease. In The Metabolic Basis of Inherited Disease, 6th edn. Scriver CR, Beaudet Al, Sly WS et al. (eds.) New York, McGraw-Hill Inc, 1989, pp. 425–437.

    Google Scholar 

  147. Matsuo N, Tsuchiya M, Cho H et al. Proximal renal tubular acidosis in a child with type I glycogen storage disease. Acta Pediatr Scand 1986;75:332–335.

    Article  CAS  Google Scholar 

  148. Chen YT, Scheinman JI, Park HK et al. Amelioration of proximal renal tubular dysfunction in type I glycogen storage disease with dietary therapy. N Engl J Med 1990;323:590–593.

    Article  PubMed  CAS  Google Scholar 

  149. Chen YT, Coleman RA, Scheinman JI et al. Renal disease in type I glycogen storage disease. N Engl J Med 1988;318:7–11.

    Article  PubMed  CAS  Google Scholar 

  150. Verani R, Bernstein J. Renal glomerular and tubular abnormalities in glycogen storage disease type I. Arch Pathol Lab Med 1988;112:271–274.

    PubMed  CAS  Google Scholar 

  151. Baker L, Dahlem S, Goldfarb S et al. Hyperfiltration and renal disease in glycogen storage disease. Kidney Int 1989;35:1345–1350.

    Article  PubMed  CAS  Google Scholar 

  152. Weinstein DA, Somers MJ, Wolfsdorf JI. Decreased urinary citrate excretion in type 1a glycogen storage disease. J Pediatr 2001;138:378–382.

    Article  PubMed  CAS  Google Scholar 

  153. Rake JP, Visser G, Labrune P et al. Glycogen storage disease type I: Diagnosis, management, clinical course and outcome. Results of the European study on glycogen storage disease type I (ESGSD I). Eur J Pediatr 2002;161:S20–S34.

    PubMed  CAS  Google Scholar 

  154. Yiu WH, Pan C-J, Ruef RA et al. Angiotensin mediates renal fibrosis in the nephropathy of glycogen storage disease type I. Kidney Int 2008;73:716–723.

    Article  PubMed  CAS  Google Scholar 

  155. Urushihara M, Kagami S, Ito M et al. Transforming growth factor-beta in renal disease with glycogen storage disease I. Pediatr Nephrol 2004;19:676–678.

    Article  PubMed  Google Scholar 

  156. Greene HL, Slonim AE, O’Neill JA Jr. et al. Continuous nocturnal intragastric feeding for management of type 1 glycogen storage disease. N Engl J Med 1976;294:423–425.

    Article  PubMed  CAS  Google Scholar 

  157. Wolfsdorf JI, Crigler JF Jr. Cornstarch regimens for nocturnal treatment of young adults with type I glycogen storage disease. Am J Clin Nutr 1997;65:1507–1511.

    PubMed  CAS  Google Scholar 

  158. Chen YT, Cornblath M, Sidbury JB et al. Cornstarch therapy in type I glycogen storage disease. N Engl J Med 1984;310:171–175.

    Article  PubMed  CAS  Google Scholar 

  159. Iyer SG, Chen CL, Wang CC et al. Long-term results of living donor liver transplantation for glycogen storage disorders in children. Liver Transpl 2007;13:848–852.

    Article  PubMed  Google Scholar 

  160. Lee KW, Lee JH, Shin SW et al. Hepatocyte transplantation for glycogen storage type Ib. Cell Transplant 2007;16:629–637.

    PubMed  Google Scholar 

  161. Fanconi G, Bickel H. Die chronishe aminoaidurie (aminosäurendiabetes oder nehrotishßglukosurisher zwergwuchs) bei der glykogenose und der cystinkrankhein. Helv Paediatr Acta 1949;4:359–396.

    PubMed  CAS  Google Scholar 

  162. Manz F, Bickel H, Brodehl J et al. Fanconi-Bickel syndrome. Pediatr Nephrol 1987;1:509–519.

    Article  PubMed  CAS  Google Scholar 

  163. Furlan F, Santer R, Vismara E et al. Bilateral nuclear cataracts as the first neonatal sign of Fanconi-Bickel syndrome. J Inherit Metab Dis 2006;29:685.

    Article  PubMed  CAS  Google Scholar 

  164. Santer R, Schneppenheim R, Dombrowski A et al. Fanconi-Bickel syndrome- a congenital defect of the liver-type facilitative glucose transporter. J Inherit Metab Dis 1998;21:191–194.

    Article  PubMed  CAS  Google Scholar 

  165. Yoo H-W, Shin Y-K, Seo E-J et al. Identification of a novel mutation in then GLUT2 gene in a patient with Fanconi-Bickel syndrome presenting with neonatal diabetes mellitus and galactosaemia. Eur J Pediatr 2002;161:351–353.

    Article  PubMed  CAS  Google Scholar 

  166. Santer R, Schneppenheim R, Dombrowski A et al. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet 1997;17:324–326.

    Article  PubMed  CAS  Google Scholar 

  167. Santer R, Groth S, Kinner M et al. The mutation spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with Fanconi-Bickel syndrome. Hum Genet 2002;110:21–29.

    Article  PubMed  CAS  Google Scholar 

  168. Bell GI, Burnant CF, Takeda J et al. Structure and function of mammalian facilitative sugar transporters. J Biol Chem 1993;268:19161–19164.

    PubMed  CAS  Google Scholar 

  169. Berry GT, Baker L, Kaplan FS et al. Diabetes-like renal glomerular disease in Fanconi-Bickel syndrome. Pediatr Nephrol 1995;9:287–291.

    Article  PubMed  CAS  Google Scholar 

  170. Lee PJ, van’t Hoff WG, Leonard JV. Catch-up growth in Fanconi-Bickel syndrome with uncooked cornstarch. J Inherit Metab Dis 1995;18:153–156.

    Article  PubMed  CAS  Google Scholar 

  171. Riva S, Ghisalberti C, Parini R et al. The Fanconi-Bickel syndrome: a case of neonatal onset. J Perinatol 2004;24:322–323.

    Article  PubMed  Google Scholar 

  172. Berfer R, Smit GP, Stoker, de Varies SA et al. Deficiency of fumarylacetoacetase in a patient with hereditary tyrosinemia. Clin Chim Acta 1981;114:37–44.

    Article  Google Scholar 

  173. Kvittingen EA, Jellum E, Stokke O et al. Assay of fumarylacetoacetate fumarylhydrolase in human liver: Deficient activity in a case of hereditary tyrosinemia. Clin Chim Acta 1981;115:311–319.

    Article  PubMed  CAS  Google Scholar 

  174. Holme E, Lindstedt S. Diagnosis and management of tyrosinemia type I. Curr Opin Pediatr 1995;6:726–732.

    Google Scholar 

  175. Weinberg AG, Mize CE, Worthen HG. The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr 1976;88:434–438.

    Article  PubMed  CAS  Google Scholar 

  176. Castilloux J, laberge AM, Martin SR et al. “Silent” tyrosinemia presenting as hepatocellular carcinoma in a 10-year-old girl. J Pediatr Gastroenterol Nurs 2007;44:375–377.

    Article  Google Scholar 

  177. Mitchell G, Larochell J, Lambert M et al. Neurologic crises in hereditary tyrosinemia. N Eng J Med 1990;322:432–437.

    Article  CAS  Google Scholar 

  178. Freeto S, Mason D, Chen J et al. A rapid ultra performance liquid chromatography tandem mass spectrometric method for measuring amino acids associated with maple syrup urine disease, tyrosinemia and phenylketonuria. Ann Clin Biochem 2007;44:474–481.

    Article  PubMed  CAS  Google Scholar 

  179. Pardis K, Weber A, Seidman EG et al. Liver transplantation for hereditary tyrosinemia: The Quebec experience. Am J Hum Genet 1990;47:338–342.

    Google Scholar 

  180. Nissenkorn A, korman SH, Vardi O et al. Carnitine-deficient myopathy as a presentation of tyrosinemia type I. J Child Neurol 2001;16:642–644.

    Article  PubMed  CAS  Google Scholar 

  181. Endo F, Sun MS. Tyrosinemia type I and apoptosis of hepatocytes and renal tubular cells. J Inhert Metab Dis 2002;25:227–234.

    Article  CAS  Google Scholar 

  182. Nakamura K, Tanaka Y, Mitsubishi H et al. Animal models of tyrosinemia. J Nutr 2007;137:1556S–1560S.

    PubMed  CAS  Google Scholar 

  183. Spencer PD, Medow MS, Moses LC et al. Effects of succinylacetone on the uptake of sugars and amino acids by brush border vesicles. Kidney Int 1988;34:671–677.

    Article  PubMed  CAS  Google Scholar 

  184. Roth KS, Carter BE, Higgins ES. Succinylacetone effects on renal tubular phosphate metabolism: A new model for experimental Fanconi syndrome. Proc Soc Exp Biol Med 1991;196:428–431.

    PubMed  CAS  Google Scholar 

  185. Fairney A, Francis D, Ersser RS et al. Diagnosis and treatment of tyrosinosis. Arch Dis Child 1968;43:540–547.

    Article  PubMed  CAS  Google Scholar 

  186. Masurl-Paulet A, Poggi-Bach J, Rolland MO et al. NTBC treatment in tyrosinemia type I: long-term outcome in French patients. J Inherit Meteb Dis 2008;31:81–87.

    Article  CAS  Google Scholar 

  187. Koelink CJ, van Hasselt P, van der Ploeg A et al. Tyrosinemia type I treated by NTBC: how does AFP predict liver cancer? Mol Genet Metab 2006;89:310–315.

    Article  PubMed  CAS  Google Scholar 

  188. Shoemaker LR, Strife CF, Balisteri WF et al. Rapid improvement of the renal tubular dysfunction associated with tyrosinemia after hepatic replacement. Pediatrics 1992;89:251–255.

    PubMed  CAS  Google Scholar 

  189. Das SK, Ray K. Wilson’s disease: an update. Nat Clin Pract Neurol 2006;2:482–493.

    Article  PubMed  CAS  Google Scholar 

  190. Bull PC, Thomas GR, Rommens JM et al. The Wilson disease is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 1993;5:327–337.

    Article  PubMed  CAS  Google Scholar 

  191. Figus A, Angius A, Loudianos G et al. Molecular pathology and haplotype analysis of Wilson disease in Mediterranean population. Am J Hum Genet 1995;57:1318–1324.

    PubMed  CAS  Google Scholar 

  192. Vulpe C, Levinson B, Whitney S et al. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 1993;3:7–13.

    Article  PubMed  CAS  Google Scholar 

  193. Yang XL, Miura N, Kawarada Y et al. Two forms of Wilson disease protein produced by alternative splicing are localized in distinct cellular compartments. Biochem J 1997;326:897–902.

    PubMed  CAS  Google Scholar 

  194. Reynolds ES, Tannen RL, Tyler HR. The renal lesion in Wilson’s disease. Am J Med 1966;40:518–537.

    Article  Google Scholar 

  195. Sozeri E, Feist D, Ruder H et al. Proteinuria and other renal functions in Wilson’s disease. Pediatr Nephrol 1997;11:307–311.

    Article  PubMed  CAS  Google Scholar 

  196. Kalra V, Mahjan S, Kesarwani PK et al. Rare presentation of Wilson’s disease: A case report. Int Urol Nephrol 2004;36:289–291.

    Article  PubMed  Google Scholar 

  197. Fulop M, Sternlieb I, Scheinberg IM. Defective urinary acidification in Wilson’s disease. Ann Intern Med 1968;68:770–777.

    PubMed  CAS  Google Scholar 

  198. Leu ML, Strickland GT, Gutman RA. The renal lesion on Wilson’s disease: Response to penicilamine therapy. Am J Med Sci 1970;260:381–398.

    Article  PubMed  CAS  Google Scholar 

  199. Elasas LG, Hayslett Jp, Sprgo BH et al. Wilson’s disease with reversible renal tubular dysfunction. Correlation with proximal tubular ultrastructure. Ann Intern Med 1971;75:427–433.

    Google Scholar 

  200. Ala A, Borjigin J, Rochwarger A et al. Wilson disease in septuagenarian siblings: Raising the bar for diagnosis. Hepatology 2005;41:668–670.

    Article  PubMed  Google Scholar 

  201. Page RA, Davie CA, McManus D et al. Clinical correlation of brain MRI and MRS abnormalities in patients with Wilson disease. Neurology 2004;63:638–643.

    Article  PubMed  CAS  Google Scholar 

  202. Kuruvilla A, Joseh S. “Face of the giant panda” sighn in Wilson’s disease; revisited. Neurol India 2000;48:395–396.

    PubMed  CAS  Google Scholar 

  203. Ala A, Walker A, Ashkan K et al. Wilson’s disease. Lancet 2007;369:397–408.

    Article  PubMed  CAS  Google Scholar 

  204. Brewer GJ, Dick RD, Johnson V et al. Treatment of Wilson’s disease with zinc: XV. Long-term follow-up. J Lab Clin Med 1998;132:264–278.

    Article  PubMed  CAS  Google Scholar 

  205. Czlonkowska A, Gajda J, Rodo M. Effects of long-term treatment in Wilson’s disease with D-penicillamine and zinc sulphate. J Neurol 1996;243:269–273.

    Article  PubMed  CAS  Google Scholar 

  206. Ben-Ishay D, Dreyfuss F, Ylmann TD. Fanconi syndrome with hypouricemia in an adult. Am J Med 1961;31:793–800.

    Article  PubMed  CAS  Google Scholar 

  207. Sheldon W, Luder J, Webb B. A familial tubular absorption defect of glucose and amino acids. Arch Dis Child 1961;36:90–95.

    Article  PubMed  CAS  Google Scholar 

  208. Friedman AL, Trygstad CW, Chesney RW. Autosomal dominant Fanconi syndrome with early renal failure. Am J Clin Genet 1978;2:225–232.

    Article  CAS  Google Scholar 

  209. Patrick A, Vameron JS, ogg CS. A family with a dominant form of idiopathic Fanconi syndrome leading to renal failure in adult life. Clin Nephrol 1981;16:289–292.

    PubMed  CAS  Google Scholar 

  210. Wen SF, Friedman AL, Oberley TD. Two case studies from a family with primary Fanconi syndrome. Am J Kidney Dis 1989;13:240–246.

    PubMed  CAS  Google Scholar 

  211. Tolaymat A, Sakarcan A, Neiberger R. idiopathic Fanconi syndrome in a family. Part I. Clinical aspects. J Am Soc Nephrol 1992;2:1310–1317.

    PubMed  CAS  Google Scholar 

  212. Tieder M, Sakarcan A, Neiberger R. Elevated serum 1,25-dihydroxyvitamin D concentrations in siblings with primary Fanconi’s syndrome. N Engl J Med 1988;319:845–849.

    Article  PubMed  CAS  Google Scholar 

  213. Wornell P, Crocker J, Wade A et al. An Acadian variant of Fanconi syndrome. Pediatr Nephrol 2007;22:1711–1715.

    Article  PubMed  Google Scholar 

  214. Nieman N, Pierson M, Marchal C et al. Nephropathie familiale glomerulotubulaire avec syndrome de Toni-Debré-Fanconi. Arch Fr Pediatr 1968;25:43–69.

    Google Scholar 

  215. McVicar M, Exeni R, Susin M. Nephrotic syndrome and multiple tubular defects in children: an early sign of focal segmental glomerulosclerosis. J Pediatr 1980;97:918–922.

    Article  PubMed  CAS  Google Scholar 

  216. Batuman V. Proximal tubular injury in myeloma. Contrib Nephrol 2007;153:87–104.

    Article  PubMed  CAS  Google Scholar 

  217. Ren H, Wang W-M, Chen X-N et al. Renal involvement and follow up of 130 patients with primary Sjögren syndrome. J Rheumatol 2008;35:278–284.

    PubMed  CAS  Google Scholar 

  218. Yang Y-S, Peng C-H, Sia S-K et al. Acquired hypophosphatemia osteomalacia associated with Fanconi’s syndrome in Sjögren syndrome. Rheumatol Int 2007;27:593–597.

    Article  PubMed  Google Scholar 

  219. Friedman AL, Chesney R. Fanconi’s syndrome in renal transplantation. Am J Nephrol 1981;1:145–147.

    Article  Google Scholar 

  220. Dobrin RS, Vernier RL, Fish AJ. Acute eosinophilic interstitial nephritis and renal failure with bone marrow-lymph node granuloma and anterior uveitis. Am J Med 1975;59:325–333.

    Article  PubMed  CAS  Google Scholar 

  221. Igarashi T, Kawato H, Kamoshita S et al. Acute tubulointersitial nephritis with uveitis sydnorme presenting as multiple tubular dysfunction including Fanconi’s syndrome. Pediatr Nephrol 1992;6:547–549.

    Article  PubMed  CAS  Google Scholar 

  222. Tung KS, Black WC. Association of renal glomerular and tubular immune complex disease and autoimmune basement membrane antibody. Lab Invest 1975;32:696–700.

    Google Scholar 

  223. Griswold WR, Krous HF, Reznik V et al. The syndrome of autoimmune interstitial nephritis and membranous nephropathy. Pediatr Nephrol 1997;11:699–702.

    Article  PubMed  CAS  Google Scholar 

  224. Makker SP, Widstrom R, Huang J. Membranous nephropathy, interstitial nephritis, and Fanconi syndrome – glomerular antigen. Pediatr Nephrol 1996;10:7–13.

    Article  PubMed  CAS  Google Scholar 

  225. Alexandridis G, Liamis G, Elisaf M. Reversible tubular dysfunction that mimicked Fanconi’s syndrome in a patient with anorexia nervosa. Int J Eat Disord 2001;30:227–230.

    Article  PubMed  CAS  Google Scholar 

  226. Igarashi T, Kawato H, Kamoshita S. Reversible low-molecular-weight proteinuria in patients with distal renal tubular acidosis. Pediatr Nephrol 1990;4:593–596.

    Article  PubMed  CAS  Google Scholar 

  227. Watanabe T. Proximal renal tubular dysfunction in primary distal renal tubular acidosis. Pediatr Nephrol 2005;20:86–88.

    Article  PubMed  Google Scholar 

  228. Cleveland WW, Adams WC, Mann JC et al. Acquired Fanconi syndrome following degraded tetracycline. J Pediatr 1965;66:333–342.

    Article  PubMed  CAS  Google Scholar 

  229. Gainza FJ, Minguela JI, Lampreabe I. Aminoglycoside-associated Fanconi’s syndrome: an underrecognized entity. Nephron 1997;77:205–211.

    Article  PubMed  CAS  Google Scholar 

  230. Ghiculescu R, Kubler P. Aminoglycoside-associated Fanconi syndrome. Am J Kidney Dis 2006;48:E89–E93.

    Article  PubMed  Google Scholar 

  231. Tsimihodiomos V, Psychogios N, Kakaidi V et al. Salicylate-induced proximal tubular dysfunction. Am J Kidney Dis 2007;50:463–467.

    Article  CAS  Google Scholar 

  232. Watanabe T, Yoshikawa H, Yamazaki S et al. Secondary renal Fanconi syndrome caused by valproate therapy. Pediatr Nephrol 2005;20:814–817.

    Article  PubMed  Google Scholar 

  233. Zaki EL, Springate JE. Renal injury from valproic acid: Case report and literature review. Pediatr Neurol 2002;27:318–319.

    Article  PubMed  Google Scholar 

  234. Bagnis CI, Deray G, Baumelou A et al. Herbs and the kidney. Am J Kidney Dis 2004;44:1–11.

    Article  Google Scholar 

  235. Hong Y-T, Fu L-S, Chung L-H et al. Fanconi’s syndrome, interstitial fibrosis and renal failure by aristolochic acid in Chinese herbs. Pediatr Nephrol 2006;21:577–579.

    Article  PubMed  Google Scholar 

  236. Takamoto K, Kawada M, Usui T et al. Aminoglycoside antibiotics reduce glucose reabsrption in kidney through down-regulation of SGLT1. Biochem Biophys Res Commun 2003;308:866–871.

    Article  PubMed  CAS  Google Scholar 

  237. Humes HD. Aminoglycoside nephrotoxicity. Kidney Int 1988;900–911.

    Google Scholar 

  238. Zamialuski-Tucker MJ, Morris ME, Springate JE. Ifosfamide metabolite chloroacetaldehyde causes Fanconi syndrome in the perfused rat kidney. Toxicol Appl Pharmacol 1994;129:170–175.

    Article  Google Scholar 

  239. Yaseen X, Michoudet C, Baverel G et al. Mechanisms of the ifosfamide-induced inhibition of endocytosis in the rat proximal kidney tubule. Arch Toxicol 2008; On line.

    Google Scholar 

  240. Pratt CB, Meyer WH, Jenkins JJ et al. Ifosfamide, Fanconi’s syndrome, and rickets. J Clin Oncol 1991;9:1495–1499.

    PubMed  CAS  Google Scholar 

  241. Hanquinet S, Wouters M, Devalck C et al. Increased renal parenchymal echogenicity in ifosfamide-induced renal Fanconi syndrome. Med Pediatr Oncol 1995;24:116–118.

    Article  PubMed  CAS  Google Scholar 

  242. Badary OA. Taurine attenuates Fanconi syndrome induced by ifosfamide without compromising its antitumor activity. Oncol Res 1998;10:355–360.

    PubMed  CAS  Google Scholar 

  243. Portill D, Nagothu KK, Megyesi J et al. Metabolomic study of cisplatin-induced nephrotoxiciy. Kidney Int 2006;69:2194–2204.

    Article  CAS  Google Scholar 

  244. François H, Coppo P, Hayman J-P et al. Partial Fanconi syndrome induced by Imanitib therapy: A novel cause of urinary phosphate loss. Am J Kidney Dis 2008;51:298–301.

    Article  PubMed  CAS  Google Scholar 

  245. Meier P, Dautheville-Gibal S, Ronco PM et al. Cidofovir-induced end-stage renal failure. Nephrol Dial Transplant 2002;17:148–149.

    Article  PubMed  Google Scholar 

  246. Ho ES, Lin DC, Mendel DB et al. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol 2000;11:383–393.

    PubMed  CAS  Google Scholar 

  247. Tanji N, Tanji K, Kambham N et al. Adefovir nephotoxicity: Possible role of mitochondrial DNA depletion. Hum Pathol 2001;32:734–740.

    Article  PubMed  CAS  Google Scholar 

  248. Daugas E, Rougier J-P, Hill G. HAART-related nephropathies in HIV-infected patients. Kidney Int 2005;67:393–403.

    Article  PubMed  CAS  Google Scholar 

  249. Verheist D, Monge M, Meynard J-L et al. Fanconi syndrome and renal failure induced by tenofovir: A first case report. Am J Kidney Dis 2002;40:1331–1333.

    Article  Google Scholar 

  250. Malik A, Abraham P, Malik N. Acute renal failure and Fanconi syndrome in an AIDS patient on tenofovir treatment-case report and review of literature. J Infect 2005;51:e61–e65.

    Article  PubMed  Google Scholar 

  251. Gil HW, Yang JO, Lee EY et al. Paraquat-induced Fanconi syndrome. Nephrology (Carlton) 2005;10:430–432.

    Article  CAS  Google Scholar 

  252. Hruz P, Mayr M, Löw R et al. Fanconi’s syndrome, acute renal failure, and tonsil ulceration after colloidal bismuth substrate intoxication. Am J Kidney DIS 2002;39:E18.

    Article  PubMed  Google Scholar 

  253. Otten J, Vis HL. Acute reversible renal tubular dysfunction following intoxication with methyl-3-choromone. J Pediatr 1968;73:422–425.

    Article  PubMed  CAS  Google Scholar 

  254. Butler HE, Morgan JM, Smythe CM. Mercaptopurine and acquired tubular dysfunction in adult nephrosis. Arch Intern Med 1965;116:853–856.

    Article  PubMed  Google Scholar 

  255. Moss AH, Gabow PA, Kaehny WD et al. Fanconi syndrome and distal renal tubular acidosis after glue sniffing. Ann Intern Med 1980;92:69–70.

    PubMed  CAS  Google Scholar 

  256. Barbier O, Jacquillet G, Tau M et al. Effect of heavy metals on, and handling by, the kidney. Nephron Physiol 2005;99:105–110.

    Article  CAS  Google Scholar 

  257. Chisolm JJ, Harrison HC, Eberlein WE et al. Aminoaciduria, hyperphosphaturia and rickets in lead poisoning. Am J Dis Child 1955;89:159–168.

    CAS  Google Scholar 

  258. Logman-Adham M. Aminoaciduira and glycosuria following severe childhood lead poisoning. Pediatr Nephrol 1998;12:218–221.

    Article  Google Scholar 

  259. Goyer RA, Tsuchuja K, Leonard DL et al. Aminoaciduria in Japanese workers in the lead and cadmium industries. Am J Clin Pathol 1972;57:635–642.

    PubMed  CAS  Google Scholar 

  260. Uetani M, Kobayashi E, Suwazono Y et al. Investigation of renal damage in the cadmium-polluted Jinzu River basin, based on health examinations in 1967 and 1968. Int J Environ Health Res 2007;17:231–242.

    Article  PubMed  Google Scholar 

  261. Takebayashi S, Jimi S, Segawa M et al. Mitochondrial DNA deletion of proximal tubules is the result of itai-itai disease. Clin Exp Nephrol 2003;7:18–26.

    Article  PubMed  CAS  Google Scholar 

  262. Elizbieta S-J, Roman L. Metabolic bone disease in children: etiology and treatment options. Treat Endocrinol 2006:5;297–318.

    Article  Google Scholar 

  263. Plank C, Konrad M, Dörr HG et al. Growth failure in a girl with Fanconi syndrome and growth hormone deficiency. Nephrol Dial Transplant 2004;19:1910–1912.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Igarashi, T. (2009). Fanconi Syndrome. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76341-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76341-3_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76327-7

  • Online ISBN: 978-3-540-76341-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics