Skip to main content

Topographic and Isostatic Reductions for Use in Satellite Gravity Gradiometry

  • Conference paper
VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 132))

Abstract

Gravity gradiometry is strongly sensitive to the gravity field induced by the topographic and isostatic masses of the Earth. The downward continuation of the gravitational signals from satellite height to sea level is rather difficult because of the high frequency behaviour of the combined topographic-isostatic effect. Therefore a topographic-isostatic reduction is proposed in order to smooth the signals. Based on different isostatic models (Airy-Heiskanen, Pratt-Hayford, Airy-Heiskanen/Pratt-Hayford), the generalized Helmert model and the crust density model via CRUST2.0 the topographic-isostatic effects are calculated for a GOCE-like satellite orbit. Using tesseroids modelled by Gauβ-Legendre cubature (3D) leads to high numerical efficiency. For the Marussi tensor of the gravitational potential the order of magnitude of both topographic and isostatic components is about ±8 E.U., while the combined topographic-isostatic effect varies from ±0.08 E.U. (Helmert II), ±0.8 E.U. (Airy-Heiskanen, Pratt-Hayford, Airy-Heiskanen/Pratt-Hayford, Helmert I) and ±4 E.U. (crust density model). In this paper, the focus is put on the gravitational effect of massive bodies in regard to the comparison between the classical isostatic models, the condensation models of Helmert and the crust density model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  • Claessens S (2003) A synthetic earth model. Analysis, implementation, validation and application. Delft university of Technology, Delft University press (Delft, The Netherlands).

    Google Scholar 

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Report 355, Department of Geodetic Science, The Ohio State University, Columbus, OH.

    Google Scholar 

  • Forsberg R, Tscherning CC (1997) Topographic effects in gravity modelling for BVP. In: Sansò F, Rummel R (eds) Geodetic Boundary Value Problems in View of the One Centimetre Geoid. Lecture Notes in Earth Sciences, vol. 65. Springer, Berlin/Heidelberg/New York, pp 241–272.

    Google Scholar 

  • Grüninger W (1990) Zur topographisch-isostatischen Reduktion der Schwere. PhD thesis, Universität Karlsruhe.

    Google Scholar 

  • Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J Geod 81: 121–136 DOI: 10.1007/s00190-006-0094-0.

    Article  Google Scholar 

  • Heck B, Wild F (2005) Topographic reductions in satellite gravity gradiometry based on a generalized condensation model. In: Sansò F (ed) A Window on the Future of Geodesy. Springer, Berlin/Heidelberg/New York, pp 294–299.

    Chapter  Google Scholar 

  • Kuhn M (2000) Geoidbestimmung unter Verwendung verschiedener Dichtehypothesen. Reihe C, Heft Nr. 520, Deutsche Geodätische Kommission, München.

    Google Scholar 

  • Kuhn M, Featherstone WE (2003) On a construction of a synthetic earth gravity model (SEGM). In: Tziavos IN (ed): Gravity and Geoid 2002, Proceedings of the 3rd Meeting International Gravity and Geoid Commission, pp 189–194.

    Google Scholar 

  • Mader K (1951) Das Newtonsche Raumpotential prismatischer Körper und seine Ableitungen bis zur dritten Ordnung. Österr Z Vermess Sonderheft 11, Österreichische Kommission für Int. Erdmessung.

    Google Scholar 

  • Makhloof A, Ilk KH (2005) Far-zone topography effects on gravity and geoid heights according to Helmerts’s methods of condensation and based on Airy-Heiskanen model. Proceedings of the 3rd Minia International Conference for Advanced Trends in Engineering.

    Google Scholar 

  • Martinec Z (1998) Boundary-value problems for gravimetric determination of a precise geoid. Lecture notes in Earth Sciences 73. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Mooney WD, Laske G, Masters TG (1998) CRUST 5.1: A global crustal model at 5° × 5°. J Geophys Res 103: 727–747.

    Article  Google Scholar 

  • Nagy D (1966) The gravitational attraction of a right rectangular prism. Geophysics 31: 362–371.

    Article  Google Scholar 

  • Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geod 74: 552–560 DOI: 10.1007/s001900000116.

    Article  Google Scholar 

  • Nagy D, Papp G, Benedek J (2002) Corrections to “The gravitational potential and its derivatives for the prism”. J Geod 76: 475 DOI: 10.1007/s00190-002-0264-7.

    Article  Google Scholar 

  • Novák P, Vanićek P, Martinec Z, Véronneau M (2001) Effects of the spherical terrain on gravity and the geoid. J Geod 75: 691–706 DOI: 10.1007/s00190-005-0435-4.

    Google Scholar 

  • Seitz K, Heck B (2001) Tesseroids for the calculation of topographic reductions. Abstracts “Vistas for Geodesy in the New Millenium”. IAG 2001 Scientific Assembly 2–7 September 2001, Budapest, Hungary, 106.

    Google Scholar 

  • Tscherning CC (1976) Computation of the Second-Order Derivatives of the Normal Potential Based on the Representation by a Legendre Series. Manuscr Geodaet 1:71–92.

    Google Scholar 

  • Tsoulis D (1999) Analytical and numerical methods in gravity field modelling of ideal and real masses. Reihe C, Heft Nr 510, Deutsche Geodätische Kommission, München.

    Google Scholar 

  • Tsoulis D (2004) Spherical harmonic analysis of the CRUST 2.0 global crustal model. J Geod 78: 7–11 DOI: 10.1007/s00190-003-0360-3.

    Google Scholar 

  • Wild F, Heck B (2004) Effects of topographic and isostatic masses in satellite gravity gradiometry. Proceedings of the Second International GOCE User Workshop GOCE, The Geoid and Oceanography, ESA-ESRIN, (ESA SP– 569, June 2004), CD-ROM.

    Google Scholar 

  • Wild F, Heck B (2005) A comparison of different isostatic models applied to satellite gravity gradiometry. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, Geoid and Space Missions. Springer, Berlin/Heidelberg/New York, pp 230–235.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wild, F., Heck, B. (2008). Topographic and Isostatic Reductions for Use in Satellite Gravity Gradiometry. In: Xu, P., Liu, J., Dermanis, A. (eds) VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy. International Association of Geodesy Symposia, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74584-6_8

Download citation

Publish with us

Policies and ethics