Skip to main content

Rhizosphere Metabolomics: Methods and Applications

  • Chapter
Secondary Metabolites in Soil Ecology

Part of the book series: Soil Biology ((SOILBIOL,volume 14))

The emerging field of rhizosphere metabolomics involves analysis of entire metabolite complement (metabolome), in an unbiased way to understand complex physiological, pathological, symbiotic and other relationships among the inhabitants of the rhizosphere. Metabolomic studies of the rhizosphere are quite challenging since the rhizosphere is a complex as well as a dynamic microenvironment. Metabolite composition in the rhizosphere is primarily governed by the nature of root exudates, secretions from rhizobacteria, fungi and other soil organisms. Conversely, the nature of these root exudates also directly or indirectly affects microbial growth in the rhizosphere. While some compounds enhance growth, others have antimicrobial activities. Apart from the diverse roles of compounds present, the complexity of the rhizosphere also stems from competition among rhizosphere microbes. Some of them are growth-promoting, while others are pathogenic. These effects are not only confined to the microbes but also extend to the plants growing in the rhizosphere. Hence, gaining knowledge of these rhizosphere metabolites as well as the effect of the biota will help us better understand this ecological niche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bajic VB, Veronika M, Veladandi PS, Meka A, Heng M-W, Rajaraman K, Pan H, Swarup S (2005) Dragon Plant Biology Explorer. A text-mining tool for integrating associations between genetic and biochemical entities with genome annotation and biochemical terms lists. Plant Physiol 138:1914–1925

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Bending GD, Poole EJ, Whipps JM, Read DJ (2002) Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiol Ecol 39:219–227

    PubMed  CAS  Google Scholar 

  • Bhalla R, Narasimhan K, Swarup S (2005) Metabolomics and its role in understanding cellular responses in plants. Plant Cell Rep 24:562–571

    Article  PubMed  CAS  Google Scholar 

  • Bode HB, Zeeck A, Plückhahn K, Jendrossek D (2000). Physiological and chemical investigtions into microbial degradation of synthetic poly (cis-1, 4-isoprene). Appl Environ Microbiol 66:3680–3685

    Article  PubMed  CAS  Google Scholar 

  • Boersma MG, Solyanikova IP, Van Berkel WJ, Vervoort J, Golovleva LA, Rietjens IM (2001) 19F NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols. J Ind Microbiol Biotechnol 26:22–34

    Article  CAS  Google Scholar 

  • Bonnington L, Eljarrat E, Guillamón M, Eichhorn P, Taberner A, Barceló D (2003) Development of a liquid chromatography-electrospray-tandem mass spectrometry method for the quantitative determination of benzoxazinone derivatives in plants. Anal Chem 75:3128–3136

    Article  PubMed  CAS  Google Scholar 

  • Cataldi TRI, Margiotta G, Iasi L, Di Chio B, Xiloyannis C, Bufo SA (2000) Determination of Sugar Compounds in olive plant extracts by anion-exchange chromatography with pulsed amperometric detection. Anal Chem 72:3902–3907

    Article  PubMed  CAS  Google Scholar 

  • Chang H-K, Zylstra GJ (1998) Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J Bacteriol 180:6529–6537

    PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, van den Broek D, Lugtenberg BJJ, Bloemberg GV (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18:244–253

    Article  PubMed  CAS  Google Scholar 

  • Czarnota MA, Rimando AM, Weston LA (2003). Evaluation of root exudates of seven sorghum accessions. J Chem Ecol 29(9):2073–2083

    Article  PubMed  CAS  Google Scholar 

  • Dagley S (1981) New perspectives in aromatic catabolism. In: Leisinger T, Cook AM, Hütter R, Nüesch J (eds) Microbial degradation of xenobiotics and recalcitrant compounds. Academic, New York, pp 181–186

    Google Scholar 

  • Davies JI, Evans WC (1964) Oxidative metabolism of naphthalene by soil pseudomonads. Biochem J 91:251–261

    PubMed  CAS  Google Scholar 

  • Derrien D, Balesdent J, Marol, Santaella C (2003) Measurement of the 13C/12C ratio of soil-plant individual sugars by gas chromatography/combustion/isotope-ratio mass spectrometry of silylated derivatives. Rapid Commun Mass Spectrom 17:2626–2631

    Article  PubMed  CAS  Google Scholar 

  • Desbrosses GG, Kopka J, Udvardi MK (2005) Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions. Plant Physiol 137:1302–1318

    Article  PubMed  CAS  Google Scholar 

  • Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294

    Article  CAS  Google Scholar 

  • Dunn WB, Bailey NJ, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625

    Article  PubMed  CAS  Google Scholar 

  • Duran AL, Yang J, Wang L, Sumner LW (2003) Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19:2283–2293

    Article  PubMed  CAS  Google Scholar 

  • Dutton PL, Evans WC (1967). Dissimilation of aromatic substrates by Rhodopseudomonas palustris. Biochem J 104:30–31

    Google Scholar 

  • Dutton PL, Evans WC (1969) The metabolism of aromatic compounds by Rhodopseudomonas palustris: a new reductive method of aromatic ring metabolism. Biochem J 113:525–536

    PubMed  CAS  Google Scholar 

  • Eljarrat E, Barcelo D (2001) Sample handling and analysis of allelochemical compounds in plants. Trends Anal Chem 20:584–590

    Article  CAS  Google Scholar 

  • Evans CJ, Evershed RP (2003) Compound-specific stable isotope analysis of soil mesofauna using thermally assisted hydrolysis and methylation for ecological investigations Anal Chem 75:6056–6062

    Article  PubMed  CAS  Google Scholar 

  • Evans WC, Fuchs G (1988) Anaerobic degradation of aromatic compounds. Annu Rev Microbiol 42:289–317

    Article  PubMed  CAS  Google Scholar 

  • Fan TWM, Lane AN, Shenker M, Bartley JP, Crowley D, Higashi RM (2001) Comprehensive chemical profiling of gramineous plant root exudates using high resolution NMR and MS. Phytochemistry 57:209–221

    Article  PubMed  CAS  Google Scholar 

  • Formanek P, Ambus P (2004) Assessing the use of delta C-13 natural abundance in separation of root and microbial respiration in a Danish beech (Fagus sylvatica L.) forest. Rapid Commun Mass Spectrom 18:897–902

    Article  PubMed  CAS  Google Scholar 

  • Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In Gibson DT (ed) Microbial degradation of organic compounds. Dekker, New York, pp 181–252

    Google Scholar 

  • Gibson J, Harwood CS (2002) Metabolic diversity in aromatic compound utilization by anerobic microbes. Annu Rev Microbiol 56:345–369

    Article  PubMed  CAS  Google Scholar 

  • Gleye C, Laurens A, Hocquemiller R, Cave A, Laprevote O, Serani L (1997) Isolation of montecristin, a key metabolite in biogenesis of acetogenins from Annona muricata and its structure elucidation by using tandem mass spectrometry. J Org Chem 62:510–513

    Article  PubMed  CAS  Google Scholar 

  • Goodacre R (2005) Making sense of the metabolome using evolutionary computation: seeing the wood with the trees. J Exp Bot 56:245–254

    Article  PubMed  CAS  Google Scholar 

  • Goodacre R, Shann B, Gilbert RJ, Timmins EM, McGovern AC, Alsberg BK, Kell DB, Logan NA (2000) Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal Chem 72:119–127

    Article  PubMed  CAS  Google Scholar 

  • Goto S, Okuno Y, Hattori M, Nishioka T, Kanehisa M (2002) LIGAND: database of chemivcal compounds and reactions in biological pathways. Nucleic Acids Res 30:402–404

    Article  PubMed  CAS  Google Scholar 

  • Griffin JL (2004) Metabolic profiles to define the genome: can we hear the phenotypes? Philos Trans R Soc Lond B Biol Sci 359:857–871

    Article  PubMed  CAS  Google Scholar 

  • Harayama S, Timmis KN (1992) Aerobic biodegradation of aromatic hydrocarbons by bacteria. In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 28. Dekker, New York, pp 99–156

    Google Scholar 

  • Harwood CS, Parales RE (1996) The B-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    Article  PubMed  CAS  Google Scholar 

  • Hollman PCH, van Trijp JMP, Buysman MNCP, Gaga MSVD, Mengelers MJB, Vries JHM, Katan MB (1997) Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett 418:152–156

    Article  PubMed  CAS  Google Scholar 

  • Hopper W, Mahadevan A (1991) Utilization of catechin and its metabolites by Bradyrhizobium japonicum. Appl Microbiol Biotechnol 35:411–415

    Article  CAS  Google Scholar 

  • Huang WE, Griffiths RI, Thompson IP, Bailey MJ, Whiteley AS (2004) Raman microscopic analysis of single microbial cells. Anal Chem 76:4452–4458

    Article  PubMed  CAS  Google Scholar 

  • Inderjit (1996) Plant phenolics in allelopathy. Bot Rev 62:186–202

    Article  Google Scholar 

  • Inderjit, Duke SO (2003) Ecophysiological aspects of allelopathy. Planta 217:529–539

    Article  PubMed  CAS  Google Scholar 

  • Jansen JJ, Hoefsloot HCJ, Boelens HFM, van der Greef J, Smilde AK (2004) Analysis of longitudinal metabolomics data. Bioinformatics 20:2438–2446

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey AM, Knight M, Evans WC (1972a) The bacterial degradation of flavonoids: hydroxylation of the A-ring of taxifolin by a soil pseudomonad. Biochem J 130:373–380

    PubMed  CAS  Google Scholar 

  • Jeffrey AM, Jerina DM, Self R, Evans WC (1972b) The bacterial degradation of flavonoids: oxidative fission of the A-ring of dihydrogossypetin by a Pseudomonas sp. Biochem J 130:383–390

    PubMed  CAS  Google Scholar 

  • Jenkins H, Hardy N, Beckmann M, Draper J, Smith A, Taylor J et al. (2004) A proposed framework for the description of plant metyabolomics experiments and their results. Nat Biotechnol 22:1601–1607

    Article  PubMed  CAS  Google Scholar 

  • Jonsson P, Gullberg J, Nordstrom A, Kusano M, Kowalczyk M, Sjostrom M, Moritz T (2004) A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal Chem 76:1738–1745

    Article  PubMed  CAS  Google Scholar 

  • Jonsson P, Bruce SJ, Moritz T, Trygg J, Sjöström M, Plumb R, Granger J, Maibaum J, Nicholson JK, Holmes E, Antti H (2005) Extraction, interpretation and validation of information for comparing samples in metabolic LC/MS data sets. Analyst 130:701–707

    Article  PubMed  CAS  Google Scholar 

  • Kachlicki P, Marczak L, Kerhoas L, Einhorn J, Stobiecki M (2005) Profiling isoflavone conjugates in root extracts of lupine species with LC/ESI/MSn systems. J Mass Spectrom 40:1088–1103

    Article  PubMed  CAS  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome Nucleic Acids Rese 32:D277–D280

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357

    Article  PubMed  CAS  Google Scholar 

  • Katajamaa M, Oresic M (2005) Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics 6:179

    Article  PubMed  CAS  Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant parasitic nematodes. Annu Rev Phytopathol 38:423–441

    Article  PubMed  CAS  Google Scholar 

  • Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255–265

    Article  PubMed  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17 6–15

    Article  PubMed  CAS  Google Scholar 

  • Lange BM, Ghassemian M (2005) Comprehensive post-genomic data analysis approaches integrating biochemical pathway maps. Phytochemistry 66:413–451

    Article  PubMed  CAS  Google Scholar 

  • López-Díez EC, Goodacre R (2004) Characterization of microorganisms using UV resonance raman spectroscopy and chemometrics. Anal Chem 76:585–591

    Article  PubMed  CAS  Google Scholar 

  • Martens H, Naes T (1989) Multivariate calibration. Wiley, New York

    Google Scholar 

  • Mendes P (2002) Emerging bioinformatics for the metabolome. Brief Bioinformatics 3:134–145

    Article  PubMed  CAS  Google Scholar 

  • Menotta M, Gioacchini AM, Amicucci A, Buffalini M, Sisti D, Stocchi V (2004) Headspace solid-phase microextraction with gas chromatography and mass spectrometry in the investigation of volatile organic compounds in an ectomycorrhizae synthesis system. Rapid Commun Mass Spectrom 18:206–210

    Article  PubMed  CAS  Google Scholar 

  • Mesnard F, Ratcliffe RG (2005) NMR analysis of plant nitrogen metabolism. Photosynth Res 83:163–180

    Article  PubMed  CAS  Google Scholar 

  • Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460

    Article  PubMed  CAS  Google Scholar 

  • Mukerji KG, Manoharachary C, Singh J (eds) (2006) Microbial activity in the rhizosphere. Soil biology, vol 7, Springer, Heidelberg

    Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    Article  PubMed  CAS  Google Scholar 

  • O’Connell KP, Goodman RM, Handelsman J (1996) Engineering the rhizosphere: expressing a bias. Trends Biotechnol 14:83–88

    Article  Google Scholar 

  • Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nature biotechnology 15:369–372

    Article  PubMed  CAS  Google Scholar 

  • Pasteur L (1857) Mémoire sur la fermentation appelée lactique. Mém Soc Sci Agric Arts 5:13–37

    Google Scholar 

  • Perera MR, Vanstone VA, Jones MGK (2005) A novel approach to identify plant parasitic nematodes using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 19:1454–1460

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer PE, Rolin DB, Schimdt JH, Tu SI, Kumosinski TF, Douds DD (1992) Ion transport and subcellular compartmentation in maize root tissue as examined by in vivo CS-133 NMR spectroscopy. J Plant Nutr 15:913–927

    Article  CAS  Google Scholar 

  • Pillai BVS, Swarup S (2002) Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 strain by comparative metabolic profiling. Appl Environ Microbiol 68:143–151

    Article  PubMed  CAS  Google Scholar 

  • Pinton R, Varanni Z, Nannipier Pi, Willig W (eds) (2000) The rhizosphere: biochemistry and organic dubstance at the soil-plant interface. Dekker, New York

    Google Scholar 

  • Rao RJ, Cooper JE (1994) Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol 176:5409–5413

    PubMed  CAS  Google Scholar 

  • Rao RJ, Sharma ND, Hamilton JTG, Boyd DR, Cooper JE (1991) Biotransformation of the pentahydroxy flavone quercetin by Rhizobium loti and Bradyrhizobium strains (Lotus). Appl Environ Microbiol 57:1563–1565

    PubMed  CAS  Google Scholar 

  • Ratcliffe RG, Shachar-Hill Y (2005) Revealing metabolic phenotypes in plants: inputs from NMR analysis. Biol Rev Camb Philos Soc 80:27–43

    Article  PubMed  CAS  Google Scholar 

  • Reo NV (2002) NMR-based metabolomics. Drug Chem Toxicol 25:375–382

    Article  PubMed  CAS  Google Scholar 

  • Rice EL (1984) Allelopathy 2nd edn. Academic, Orlando

    Google Scholar 

  • Rugh CL, Susilawati E, Kravchenko AN, Thomas JC (2005) Biodegrader metabolic expansion during polyaromatic hydrocarbons rhizoremediation. Z Naturforsch C 60:331–339

    PubMed  CAS  Google Scholar 

  • Ryals J (2004) Drug discovery metabolomics. Metabolomics–an important emerging science. Business briefing: Pharmatech 51–54

    Google Scholar 

  • Shultz E, Engle FE, Wood JM (1974) New oxygenases in the degradation of flavones and flavonones by Pseudomonas putida. Biochemistry 13:1768–1776

    Article  Google Scholar 

  • Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475

    Article  PubMed  CAS  Google Scholar 

  • Smilde AK, Jansen JJ, Hoefsloot HCJ, Lamers R-J AN, van der Greef J, Timmerman ME (2005) ANOVA-Simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics 21:3043–3048

    Article  PubMed  CAS  Google Scholar 

  • Spaink HP, Wijfjes AHM, Vanvliet TB, Kijne JW, Lugtenberg BJJ (1993) Rhizobial lipo-oligosaccharide signals and their role in plant morphogenesis are analogous lipophilic chitin derivatives produced by the plant. Aust J Plant Physiol 20:381–392

    Article  CAS  Google Scholar 

  • Steeghs M, Bais HP, de Gouw J et al. (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58

    Article  PubMed  CAS  Google Scholar 

  • Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era Phytochemistry 62:817–836

    Article  PubMed  CAS  Google Scholar 

  • Tarvin D, Buswell AM (1934) The methane fermentation of organic acids and carbohydrates. J Am Chem Soc 56:1751–1755

    Article  CAS  Google Scholar 

  • The Standard Metabolic Reporting Structures Working Group (2005) Summary Recommendations for standardization and reporting of metabolic analyses. Nat Biotechnol 23:833–839

    Article  CAS  Google Scholar 

  • van der Meer JR, de Vos WM, Harayama S, Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694

    PubMed  Google Scholar 

  • van der Werf MJ, Jellema RH, Hankemeier T (2005) Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets. J Ind Microbiol Biotechnol 32:234–252

    Article  PubMed  CAS  Google Scholar 

  • Villas-Boas SG, Rasmussen S, Lane GA (2005) Metabolomics or metabolite profiles? Trends Biotechnol 23:385–386

    Article  PubMed  CAS  Google Scholar 

  • Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2003) Metabolic profiling of root exudates of Arabidopsis thaliana. J Agric Food Chem 51:2548–2554

    Article  PubMed  CAS  Google Scholar 

  • Warhurst AM, Clarke KF, Hill RA, Holt RA, Fewson CA (1994) Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259. Appl Environ Microbiol 60:1137–1145

    PubMed  CAS  Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  PubMed  CAS  Google Scholar 

  • Weidenhamer JD (2005). Biomimetic measurement of allelochemical dynamics in the rhizosphere. J Chem Ecol 31(2):221–236

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Liu S, Liu Z, Song F, Fang S (1998) A study of Aconitum alkaloids from aconite roots in Aconitum carmichaeli Debx using matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 12:821–824

    Article  CAS  Google Scholar 

  • Wittig U, De Beuckelaer A (2001) Analysis and comparison of metabolic pathway databases. Brief Bioinformatics 2:126–142

    Article  PubMed  CAS  Google Scholar 

  • Young LY, Frazer AC (1987) The fate of lignin and lignin-derived compounds in anaerobic ecosystems. Geomicrobiol J 5:261–293

    Article  CAS  Google Scholar 

  • Zhang P, Foerster H, Tissier CP, Mueller L, Paley S, Karp PD, Rhee SY (2005) MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol 138:27–37

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reuben, S., Bhinu, V.S., Swarup, S. (2008). Rhizosphere Metabolomics: Methods and Applications. In: Karlovsky, P. (eds) Secondary Metabolites in Soil Ecology. Soil Biology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74543-3_3

Download citation

Publish with us

Policies and ethics