Skip to main content

Significant numbers of viable ancient microorganisms are known to be present within the permafrost. They have been isolated in both polar regions from the cores up to 400 m deep and ground temperatures of −27°C. The age of the cells corresponds to the longevity of the permanently frozen state of the soils, with the oldest cells dating back to ~3 million years in the Arctic, and ~5 million years in the Antarctic. They are the only life forms known to have retained viability over geological time. Thawing of the permafrost renews their physiological activity and exposes ancient life to modern ecosystems. Thus, the permafrost represents a stable and unique physicochemical complex, which maintains life incomparably longer than any other known habitats. If we take into account the depth of the permafrost layers, it is easy to conclude that they contain a total microbial biomass many times higher than that of the soil cover. This great mass of viable matter is peculiar to permafrost only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abyzov S (1993) Microorganisms in the Antarctic ice. In: Friedman EI (ed) Antarctic microbiology. Willey-Liss, New York, pp 265–296.

    Google Scholar 

  • Becker RE, Volkmann CM (1961) Proceedings of the Alaskan Scientific Conference College, vol 12, pp 188.

    Google Scholar 

  • Belova SE, Pankratov TA, Dedysh SN (2006) Bacteria of the genus Burkholderia as a typical component of the microbial community of Sphagnum peat bogs. Microbiology 75:90–96.

    Article  CAS  Google Scholar 

  • Berestovskaya YY, Vasil’eva L, Chestnykh O, Zavarzin GA (2002) Methanotrophs of the psychrophilic microbial community of the Russian Arctic tundra. Mikrobiologiia 71:538–544.

    Google Scholar 

  • Berestovskaya YY, Rusanov II, Vasil’eva LV, Pimenov NV (2005) The processes of methane production and oxidation in the soils of the Russian Arctic tundra. Microbiology 74:221–229.

    Article  CAS  Google Scholar 

  • Boyd WL, Boyd JW (1962) Presence of Azotobacter species in polar regions. J Bacteriol 83:429–430.

    Article  CAS  PubMed  Google Scholar 

  • Boyd WL, Boyd JW (1964) The presence of bacteria in permafrost of the Alaskan Arctic, Can J Microbiol 10:917–919.

    Article  CAS  PubMed  Google Scholar 

  • Cameron R, Morelli F (1974) Viable microorganisms from ancient Ross Island and Taylor Valley drill core. Antarct J USA N9:113–116.

    Google Scholar 

  • Cameron RE, King J, David C (1970) Microbiology, ecology and microclimatology of soil sites in Dry Valleys of Southern Victoria Land, Antarctica. In: Holdgate MW (ed) Antarctic ecology. Academic Press, New York, pp 702–716.

    Google Scholar 

  • Campbell D, MacCulloch R, Campbell I (1997) Thermal regimes of some soils in the McMurdo Sound region, Antarctica. Proceedings of Int. Workshop on Polar Desert Ecosystems, Christchurch, New Zealand.

    Google Scholar 

  • Carpenter EJ, Lin SJ, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517.

    Article  CAS  PubMed  Google Scholar 

  • Castello JD, Rogers SO, Smith JE, Starmer WT, Zhao Y (2005) Plant and bacterial viruses in the Greenland ice sheet. In: Castello JD, Rogers SO (eds) Life in ancient ice. Princeton University Press, Princeton, NJ, pp 196–207.

    Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003) Bacterial recovery from ancient glacial ice. Environ Microbiol 5:433–436.

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004) Methylocella tundrae sp nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156.

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaya TG, Lysak LV, Zvyagintsev DG (1996) Soils and microbial diversity. Eurasian Soil Sci 29:630–634.

    Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053.

    Article  PubMed  CAS  Google Scholar 

  • Fyodorov-Davydov DG, Spirina EV (1998) Microbiological characterization of cryogenic soils in the Kolymskaya lowland. Eurasian Soil Sci 31:1331–1344.

    Google Scholar 

  • Gilichinsky D (2002) Permafrost as a microbial habitat. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 932–956.

    Google Scholar 

  • Gilichinsky D, Wagener S (1995) Microbial life in permafrost (A historical review). Permafrost Periglacial Processes 5:243–250.

    Article  Google Scholar 

  • Gilichinsky DA, Soina VS, Petrova MA (1993) Cryoprotective properties of water in the Earth cryollitosphere and its role in exobiology. Origins of Life and Evolution of the Biosphere 23:65–75.

    Article  CAS  PubMed  Google Scholar 

  • Gilichinsky DA, Wagener S, Vishnivetskaya TA (1995) Permafrost microbiology. Permafrost Periglacial Processes 6:281–291.

    Article  Google Scholar 

  • Gilichinsky DA, Wilson GS, Friedmann EI, McKay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Spirina EV, Vorobyova EA, Fyodorov-Davydov DG, Hallet B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton P, Ostroumov VE, Tiedje JM (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age and implication for astrobiology. Astrobiology 7:275–311.

    Article  CAS  PubMed  Google Scholar 

  • Horowitz NH, Hubbard JS, Cameron RE (1972) Microbiology of Dry Valleys of Antarctica. Science 176:242–245.

    Article  PubMed  CAS  Google Scholar 

  • Isachenko B (1912) Some data on permafrost bacteria. Izvestiya Sankt-Peterburgskogo Botanicheskogo Sada, vol 12, N 5–6:140 (in Russian).

    Google Scholar 

  • James N, Sutherland ML (1942) Are there living bacteria in permanently frozen subsoil? Can J Res 20:228–235.

    Google Scholar 

  • Jensen HL (1951) Notes on the microbiology of soil from northern Greenland. Medd Grø´nland 142:23–29.

    Google Scholar 

  • Kalyaev AV (1947) On anabiosis under permafrost conditions. Microbiologyia 16:121–125 (in Russian).

    Google Scholar 

  • Kapitsa AP, Ridley JK, Robin GD, Siegert MJ, Zotikov IA (1996) A large deep freshwater lake beneath the ice of central East Antarctica. Nature 381:684–686.

    Article  CAS  Google Scholar 

  • Kapterev PN (1936) Dokladi Akademii Nauk SSSR 12:137–141 (in Russian).

    Google Scholar 

  • Kapterev PN (1938) Dokladi Akademii Nauk SSSR 20:315–317 (in Russian).

    Google Scholar 

  • Karl D, Bird D, Bjorkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2146.

    Article  CAS  PubMed  Google Scholar 

  • Kholodii G, Mindlin S, Petrova M, Minakhina S (2003) Tn5060 from the Siberian permafrost is most closely related to the ancestor of Tn21 prior to integron acquisition. FEMS Microbiol Lett 226:251–255.

    Article  CAS  PubMed  Google Scholar 

  • Kjoller A, Odum S (1971) Arctic 24:230–232.

    Google Scholar 

  • Kobabe S, Wagner D, Pfeiffer EM (2004) Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridisation. FEMS Microbiol Ecol 50:13–23.

    Article  CAS  PubMed  Google Scholar 

  • Kriss AE (1940) Microbiologiya 9:879–886 (in Russian).

    Google Scholar 

  • Kriss A, Grave N (1944) On microorganisms in one thousand year old permafrost Microbiologiya, N5:251–254 (in Russian).

    Google Scholar 

  • Llano, G. (1962) The terrestrial life of the Antarctic. Scientific Amer 207:212–220.

    Article  Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (Ribosomal Database Project). Nucl Acids Res 29:173–174.

    Article  CAS  PubMed  Google Scholar 

  • McBee RH, McBee V (1956) The incidence of thermophilic bacteria in Arctic soils and waters. J Bacteriol 71:182–185.

    CAS  PubMed  Google Scholar 

  • McKay C, Nienow J, Meyer M, Friedmann EI (1993) Continuous nanoclimate data (1985–1988) from the Ross Desert (McMurdo Dry Valleys) cryptoendolithic microbial ecosystem. Antarct Res Ser 61:201–207.

    Google Scholar 

  • McKay C, Mellon M, Friedmann EI (1998) Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica. Antarct Sci 10:31–38.

    Article  CAS  PubMed  Google Scholar 

  • Mannisto M, Haggblom M (2006) Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Syst Appl Microbiol 29:229–243.

    Article  CAS  PubMed  Google Scholar 

  • Meyer M, Huang G.-H, Morris G, Friedmann EI (1988) The effect of low temperatures on Antarctic endolithic green algae. Polarforschung 58:113–119.

    CAS  PubMed  Google Scholar 

  • Mindlin S, Minakhin L, Petrova M, Kholodii G, Minakhina S, Gorlenko Zh, Nikiforov V (2005) Present-day mercury resistance transposons are common in bacteria preserved in permafrost grounds since the Upper Pleistocene. Res Microbiol 156:994–1004.

    Article  CAS  PubMed  Google Scholar 

  • Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120, 000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213.

    Article  CAS  PubMed  Google Scholar 

  • Nelson LM, Parkinson D (1978) Growth characteristics of three bacterial isolates from an arctic soil. Can J Microbiol 24:909–14.

    Article  CAS  PubMed  Google Scholar 

  • Neufeld JD, Mohn WW (2005) Unexpectedly high bacterial diversity in Arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol 71:5710–5718.

    Article  CAS  PubMed  Google Scholar 

  • Nienow J, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology, New York, Willey-Liss, pp 343–412.

    Google Scholar 

  • Omelyansky V (1911) Bacteriological investigation of Sanga mammoth and nearby soil. Arkhiv biologicheskikh nauk, N 4:335–340 (in Russian).

    Google Scholar 

  • Parinkina OM (1989) Microflora of tundra soils: ecological geographical features and productivity. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM., Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica. Nature 399:429–436.

    Article  CAS  Google Scholar 

  • Petrova MA, Mindlin SZ, Gorlenko ZhM, Kalyaeva ES, Soina VS, Bogdanova ES (2002) Mercury-resistant bacteria from permafrost sediments and prospects for their use in comparative studies of mercury resistance determinants, Russian J Genet 38:569–1574.

    Article  Google Scholar 

  • Pewe T (1975) Quaternary geology of Alaska. Geological Survey Professional paper 835. US Government Printing Office, Washington.

    Google Scholar 

  • Price P (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA 97:1247–1251.

    Article  CAS  PubMed  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636.

    Article  CAS  PubMed  Google Scholar 

  • Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP, Doran PT, Gordon DA, Lanoil BD, Pinckney JL (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095–2098.

    Article  CAS  PubMed  Google Scholar 

  • Rivkina E, Gilichinsky D, Wagener S, Tiedje J, McGrath J (1998) Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments. Geomicrobiol J 15:187–193.

    Article  Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233.

    Article  CAS  PubMed  Google Scholar 

  • Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33:1215–1221.

    Article  CAS  PubMed  Google Scholar 

  • Rivkina R, Shcherbakova V, Laurinavichius K, Petrovskaya L, Krivushin K, Kraev G, Pecheritsina S, Gilichinsky D (2007) Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol Ecol 61:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425.

    CAS  PubMed  Google Scholar 

  • Shi T, Reeves RH, Gilichinsky DA, Friedmann EI (1997) Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb Ecol 33:169–179.

    Article  CAS  PubMed  Google Scholar 

  • Shoham D (2005) Viral pathogens of humans likely to be preserved in natural ice. In: Castello JD, Rogers SO (eds), Life in ancient ice. Princeton University Press, Princeton, NJ, pp 208–226.

    Google Scholar 

  • Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a high Arctic glacier. Appl Environ Microbiol 66:3214–3220.

    Article  CAS  PubMed  Google Scholar 

  • Soina VS, Mulyukin AL, Demkina EV, Vorobyova EA, El-Registan GI (2004) The structure of resting bacterial populations in soil and subsoil permafrost. Astrobiology 4:345–358.

    Article  PubMed  Google Scholar 

  • Spirina E, Cole J, Chai B, Gilichinsky D, Tiedje J (2003) High throughput approach to study ancient microbial phylogenetic diversity in permafrost as a terrestrial model of Mars. Astrobiology 2:542–543.

    Google Scholar 

  • Steven B, Leveille R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267.

    Article  PubMed  Google Scholar 

  • Steven B, Geoffrey B, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523.

    Article  CAS  PubMed  Google Scholar 

  • Thompson L, Yao T, Davis E, Henderson K, Mosley-Thompson E, Lin P-N, Beer J, Synal H-A, Cole-Dai J, Boizan J (1997) Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science 276:1821–1825.

    Article  CAS  Google Scholar 

  • Tiedje J, Smith GB, Holden WE, Finney C, Gilichinsky DA (1994) Recovery of DNA, denitrifiers and patterns of antibiotics in microorganisms from ancient permafrost soils of Eastern Siberia. In: Gilichinsky DA (ed) Viable microorganisms in permafrost. Russian Academy of Sciences, Pushchino, pp 83–99.

    Google Scholar 

  • van Everdingen R (1998, ed) Multi-language glossary of permafrost and related ground-ice terms. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology.

    Google Scholar 

  • Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173.

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskaya TA, Erokhina LG, Spirina EV, Shatilovich AV, Vorobyova EA, Gilichinsky DA (2001) Ancient viable phototrophs within the permafrost. Nova Hedwigia 123:427–442.

    Google Scholar 

  • Vishnivetskaya TA, Spirina EV, Shatilovich AV, Erokhina LG, Vorobyova EA, Gilichinsky DA (2003) The resistance of viable permafrost algae to simulated environmental stresses: implications for astrobiology. Int J Astrobiol 2:171–177.

    Article  Google Scholar 

  • Vishnivetskaya TA, Petrova MA, Urbance J, Ponder M, Moyer CL, Gilichinsky DA, Tiedje JM (2006) Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology 6: 400–414.

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskaya TA, Siletzky R, Jefferies N, JM Tiedje, Kathariou S (2007) Effect of low temperature and culture media on the growth and freeze-thawing tolerance of Exiguobacterium strains. Cryobiology 54:234–240.

    Article  CAS  PubMed  Google Scholar 

  • Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvili A, Gilichinsky D, Rivkina E, Vishnivetskaya T (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277–290.

    Article  CAS  Google Scholar 

  • Willerslev E, Hansen AJ, Christensen B, Steffensen JP, Arctander P (1999) Diversity of Holocene life forms in fossil glacier ice. Proc Natl Acad Sci USA 96:8017–8021.

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Shoham D, Gilichinsky D, Davydov S, Castello J, Rogers S (2006) Evidence for influenza A virus RNA in Siberian lake ice. J Virol 80:12229–12235.

    Article  CAS  PubMed  Google Scholar 

  • Zhou JZ, Davey ME, Figueras JB, Rivkina E, Gilichinsky D, Tiedje JM (1997) Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology 143:3913–3919.

    Article  CAS  PubMed  Google Scholar 

  • Zvyagintsev D (1994) Vertical distribution of microbial communities in soils. In: Ritz K, Dighton J, Giller K (eds) Beyond the biomass compositional and functional analysis of soil microbial communities. Wiley, West Sussex, UK, pp 29–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gilichinsky, D., Vishnivetskaya, T., Petrova, M., Spirina, E., Mamykin, V., Rivkina, E. (2008). Bacteria in Permafrost. In: Margesin, R., Schinner, F., Marx, JC., Gerday, C. (eds) Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74335-4_6

Download citation

Publish with us

Policies and ethics