Skip to main content

Joint Sulci Detection Using Graphical Models and Boosted Priors

  • Conference paper
Information Processing in Medical Imaging (IPMI 2007)

Abstract

In this paper we propose an automated approach for joint sulci detection on cortical surfaces by using graphical models and boosting techniques to incorporate shape priors of major sulci and their Markovian relations. For each sulcus, we represent it as a node in the graphical model and associate it with a sample space of candidate curves, which is generated automatically using the Hamilton-Jacobi skeleton of sulcal regions. To take into account individual as well as joint priors about the shape of major sulci, we learn the potential functions of the graphical model using AdaBoost algorithm to select and fuse information from a large set of features. This discriminative approach is especially powerful in capturing the neighboring relations between sulcal lines, which are otherwise hard to be captured by generative models. Using belief propagation, efficient inferencing is then performed on the graphical model to estimate each sulcus as the maximizer of its final belief. On a data set of 40 cortical surfaces, we demonstrate the advantage of joint detection on four major sulci: central, precentral, postcentral and the sylvian fissure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ono, M., Kubik, S., Abarnathey, C.: Atlas of the Cerebral Sulci. Thieme Medical Publishers (1990)

    Google Scholar 

  2. Thompson, P.M., Hayashi, K.M., Sowell, E.R., Gogtay, N., Giedd, J.N., Rapoport, J.L., de Zubicaray, G.I., Janke, A.L., Rose, S.E., Semple, J., Doddrell, D.M., Wang, Y., van Erp, T.G.M., Cannon, T.D., Toga, A.W.: Mapping cortical change in alzheimers disease, brain development, and schizophrenia. NeuroImage 23, S2–S18 (2004)

    Article  Google Scholar 

  3. Khaneja, N., Miller, M., Grenander, U.: Dynamic programming generation of curves on brain surfaces. IEEE Trans. Pattern Anal. Machine Intell. 20(11), 1260–1265 (1998)

    Article  Google Scholar 

  4. Bartesaghi, A., Sapiro, G.: A system for the generation of curves on 3D brain images. Human Brain Mapping 14, 1–15 (2001)

    Article  Google Scholar 

  5. Lui, L.M., Wang, Y., Chan, T.F., Thompson, P.M.: Automatic landmark and its application to the optimization of brain conformal mapping. In: Proc. CVPR vol. 2, pp. 1784–1792 (2006)

    Google Scholar 

  6. Rettmann, M.E., Han, X., Xu, C., Prince, J.L.: Automated sulcal segmentation using watersheds on the cortical surface. NeuroImage 15(2), 329–244 (2002)

    Article  Google Scholar 

  7. Kao, C., Hofer, M., Sapiro, G., Stern, J., Rotternberg, D.: A geometric method for automatic extraction of sulcal fundi. In: Proc. ISBI 2006, pp. 1168–1171 (2006)

    Google Scholar 

  8. Lohmann, G.: Extracting line representations of sulcal and gyral patterns in MR images of the human brain. IEEE Trans. Med. Imag. 17(6), 1040–1048 (1998)

    Article  Google Scholar 

  9. Zhou, Y., Thompson, P.M., Toga, A.W.: Extracting and representing the cortical sulci. IEEE Computer Graphics and Applications 19(3), 49–55 (1999)

    Article  Google Scholar 

  10. Mangin, J.F., Frouin, V., Bloch, I., Régis, J., López-Krahe, J.: From 3d magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision 5, 297–318 (1995)

    Article  Google Scholar 

  11. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models-their training and application. Computer Vision and Image Understanding 61, 38–59 (1995)

    Article  Google Scholar 

  12. Lohmann, G., Cramon, D.: Automatic labelling of the human cortical surface using sulcal basins. Medical Image Analysis 4, 179–188 (2000)

    Article  Google Scholar 

  13. Tao, X., Prince, J., Davatzikos, C.: Using a statistical shape model to extract sulcal curves on the outer cortex of the human brain. IEEE Trans. Med. Imag. 21(5), 513–524 (2002)

    Article  Google Scholar 

  14. Rivière, D., Mangin, J., Papadopoulos-Orfanos, D., Martinez, J., Frouin, V., Régis, J.: Automatic recognition of cortical sulci of the human brain using a congregation of neural networks. Medical Image Analysis 6, 77–92 (2002)

    Article  Google Scholar 

  15. Tu, Z.: Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering. In: Proc. ICCV 2005, vol. 2, pp. 1589–1596 (2005)

    Google Scholar 

  16. Zheng, S., Tu, Z., Yuille, A., Reiss, A., Dutton, R., Lee, A., Galaburda, A., Thompson, P., Dinov, I., Toga, A.: A learning-based algorithm for automatic extraction of the cortical sulci. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 695–703. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Pizer, S., Jeong, J., Lu, C., Joshi, S.: Estimating the statistics of multi-object anatomic geometry using inter-object relationships. In: Olsen, O.F., Florack, L.M.J., Kuijper, A. (eds.) DSSCV 2005. LNCS, vol. 3753, pp. 60–71. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MATH  Google Scholar 

  19. Perl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San Mateo (1988)

    Google Scholar 

  20. Yedidia, J., Freeman, W., Weiss, Y.: Understanding Belief Propagation and Its Generalizations, pp. 239–269. Morgan Kaufmann Publishers Inc, San Francisco (2003)

    Google Scholar 

  21. Berrou, C., Glavieus, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and decoding: Turbo-codes. In: Proc. IEEE Int. Conf. on Communications, pp. 1064–1070. IEEE Computer Society Press, Los Alamitos (1993)

    Google Scholar 

  22. Shi, Y., Reiss, A., Lee, A., Dutton, R., Bellugi, U., Galaburda, A., Korenberg, J., Mills, D., Dinov, I., Thompson, P., Toga, A.: Hamilton-Jacobi skeletons on cortical surfaces with applications in characterizing the gyrification pattern in Williams syndrome. In: Proc. ISBI 2007 (2007)

    Google Scholar 

  23. Siddiqi, K., Bouix, S., Tannebaum, A., Zuker, S.: Hamilton-Jacobi skeletons. Int’l Journal of Computer Vision 48(3), 215–231 (2002)

    Article  MATH  Google Scholar 

  24. Gallant, S.: Perceptron-based learning algorithms. IEEE Trans. Neural Networks 1(2), 179–191 (1990)

    Article  Google Scholar 

  25. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95(15), 8431–8435 (1998)

    Article  MATH  Google Scholar 

  26. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Statist. 28(2), 337–407 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Shi, Y. et al. (2007). Joint Sulci Detection Using Graphical Models and Boosted Priors. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics