Skip to main content

Two-State Vector Formalism

  • Chapter
  • First Online:
Compendium of Quantum Physics

The two-state vector formalism (TSVF) [1] is a time-symmetric description of the standard quantum mechanics originated in Aharonov, Bergmann and Lebowitz [2]. The TSVF describes a quantum system at a particular time by two quantum states: the usual one, evolving forward in time, defined by the results of a complete measurement at the earlier time, and by the quantum state evolving backward in time, defined by the results of a complete measurement at a later time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Y. Aharonov and L. Vaidman, The Two-State Vector Formalism, an Updated Review, in Time in Quantum Mechanics, Vol 1., Lect. Notes Phys. 734, 399 (2008).

    Article  ADS  Google Scholar 

  2. Y. Aharonov, P. G. Bergmann and J. L. Lebowitz, Time Symmetry in the Quantum Process of Measurement, Phys. Rev. B 134, 1410 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  3. Y Aharonov and L. Vaidman, Properties of a Quantum System During the Time Interval Between Two Measurements, Phys. Rev. A 41, 11 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  4. Y Aharonov and L. Vaidman, Complete Description of a Quantum System at a Given Time, J. Phys. A 24, 2315 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  5. Y Aharonov, D. Albert, and L. Vaidman, How the Result of Measurement of a Component of the Spin of a Spin- ½ Particle Can Turn Out to Be 100? Phys. Rev. Lett. 60, 1351 (1988).

    Article  ADS  Google Scholar 

  6. L. Vaidman, Y Aharonov and D. Albert, How to ascertain the values of σx, σy, and σz of a spin-1/2 particle, Phys. Rev. Lett. 58, 1385 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  7. B.G Englert and Y Aharonov, The Mean King's Problem: Prime Degrees of Freedom, Phys. Lett. A, 284 (2001).

    Google Scholar 

  8. L. Vaidman, Lorentz-Invariant “Elements of Reality” and the Joint Measurability of Commuting Observables, Phys. Rev. Lett. 70, 3369 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  9. L. Vaidman, Weak-Measurement Elements of Reality, Found. Phys. 26, 895 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  10. L. Vaidman and I. Nevo, Nonlocal Measurements in the Time-Symmetric Quantum Mechanics, Int. J. Mod. Phys. B 20, 1528 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  11. Y Aharonov and E. Gruss, Two-time interpretation of quantum mechanics, quant-ph/0507269 (2005).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vaidman, L. (2009). Two-State Vector Formalism. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_225

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70626-7_225

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70622-9

  • Online ISBN: 978-3-540-70626-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics