Skip to main content

Polarised Growth in Fungi

  • Chapter
Biology of the Fungal Cell

Part of the book series: The Mycota ((MYCOTA,volume 8))

Abstract

To accommodate new biomass generated through growth, all cells must by necessity increase their surface area. In fungal cells this means expanding the plasma membrane and cell wall, and is achieved by the fusion of membrane-bound secretory vesicles with the existing plasma membrane. Polarised growth requires that the flow of secretory vesicles is directed towards a single site on the cell cortex. The budding yeast, S. cerevisiae and the fission yeast, S. pombe have served as models for the investigation of the molecular mechanisms that drive polarised growth and a detailed picture has now emerged. Cortical cues result in the local activation of the Cdc42 GTPase. As a result of Cdc42 action actin cables are nucleated by a surface protein complex called the polarisome. Secretory vesicles are transported along these actin cables to dock with a second protein complex called the exocyst before fusion with the plasma membrane. Filamentous fungi show a degree of polarised growth that it much greater than that seen in budding or fission yeast. During hyphal growth, a structure called a Spitzenkörper is located at the hyphal tip. Secretory vesicles accumulate in the Spitzenkörper, which is thought to acts as a vesicle supply centre, which mathematical modelling shows can satisfactorily explain the pattern of hyphal growth. A key question is the relationship of the polarisome and Spitzenkörper. Is the Spitzenkörper a hyperactive polarisome or are they separate structures? One model is that the Spitzenkörper is a switching station whereby secretory vesicles are delivered to the Spitzenkörper along microtubules, before their onward transport along actin cables nucleated by the polarisome at the cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamo JE, Moskow JJ, Gladfelter AS, Viterbo D, Lew DJ, Brennwald PJ (2001) Yeast Cdc42 functions at a late step in exocytosis, specifically during polarized growth of the emerging bud. J Cell Biol 155:581–592

    Article  PubMed  CAS  Google Scholar 

  • Adams A, Pringle J (1983) Relationship of actin and tubulin distribution to bud growth in wild type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol 98:934–945

    Article  Google Scholar 

  • Adams A, Johnson D, Longnecker R, Sloat B, Pringle J (1990a) CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J Cell Biol 111:131–142

    Article  PubMed  CAS  Google Scholar 

  • Adams AE, Johnson DI, Longnecker RM, Sloat BF, Pringle JR (1990b) CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J Cell Biol 111:131–142

    Article  PubMed  CAS  Google Scholar 

  • Ahn SH, Acurio A, Kron SJ (1999) Regulation of G2/M progression by the STE mitogen-activated protein kinase pathway in budding yeast filamentous growth. Mol Biol Cell 10:3301–3316

    PubMed  CAS  Google Scholar 

  • Ahn SH, Tobe BT, Gerald JNF, Anderson SL, Acurio A, Kron SJ (2001) Enhanced cell polarity in mutants of the budding yeast cyclin-dependent kinase Cdc28p. Mol Biol Cell 12:3589–3600

    PubMed  CAS  Google Scholar 

  • Akashi T, Kanbe T, Tanaka K (1994) The role of the cytoskeleton in the polarized growth of the germ tube in Candida albicans. Microbiology 140:271–280

    Article  PubMed  Google Scholar 

  • Albert S, Gallwitz D (2000) Msb4p, a protein involved in Cdc42p-dependent organization of the actin cytoskeleton, is a Ypt/Rab-specific GAP. Biol Chem 381:453–456

    Article  PubMed  CAS  Google Scholar 

  • Alberts AS (2001) Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J Biol Chem 276:2824–2830

    Article  PubMed  CAS  Google Scholar 

  • Amon A, Tyers M, Futcher B, Nasmyth K (1993) Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74:993–1007

    Article  PubMed  CAS  Google Scholar 

  • Anderson J, Soll DR (1986) Differences in actin localization during bud and hypha formation in the yeast Candida albicans. J Gen Microbiol 132:2035–2047

    PubMed  CAS  Google Scholar 

  • Ayscough KR (2005) Defining protein modules for endocytosis. Cell 123:188–190

    Article  PubMed  CAS  Google Scholar 

  • Bachewich C, Whiteway M (2005) Cyclin Cln3p links G1 progression to hyphal and pseudohyphal development in Candida albicans. Eukaryot Cell 4:95–102

    Article  PubMed  CAS  Google Scholar 

  • Bachewich C, Nantel A, Whiteway M (2005) Cell cycle arrest during S or M phase generates polarized growth via distinct signals in Candida albicans. Mol Microbiol 57:942–959

    Article  PubMed  CAS  Google Scholar 

  • Bahler J, Pringle JR (1998) Pom1p, a fission yeast protein kinase that provides positional information for both polarized growth and cytokinesis. Genes Dev 12:1356–1370

    PubMed  CAS  Google Scholar 

  • Bai C, Ramanan N, Wang YM, Wang Y (2002) Spindle assembly checkpoint component CaMad2p is indispensable for Candida albicans survival and virulence in mice. Mol Microbiol 45:31–44

    Article  PubMed  CAS  Google Scholar 

  • Bardwell L (2005) A walk-through of the yeast mating pheromone response pathway. Peptides 26:337–1476

    Article  CAS  Google Scholar 

  • Bartnicki-Garcia S, Hergert F, Gierz G (1989) Computer-simulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth. Protoplasma 153:46–57

    Article  Google Scholar 

  • Bartnicki-Garcia S, Bartnicki DD, Gierz G, Lopez-Franco R, Bracker CE (1995) Evidence that Spitzenkörper behavior determines the shape of a fungal hypha-a test of the hyphoid model. Exp Mycol 19:153–15

    Article  PubMed  CAS  Google Scholar 

  • Barton R, Gull K (1988) Variation in cytoplasmic microtubular organisation and spindle length between the two forms of the dimorphic fungus Candida albicans. J Cell Sci 91:211–220

    PubMed  Google Scholar 

  • Bassilana M, Arkowitz RA (2006) Rac1 and Cdc42 have different roles in Candida albicans development. Eukaryot Cell 5:321–329

    Article  PubMed  CAS  Google Scholar 

  • Bassilana M, Blyth J, Arkowitz RA (2003) Cdc24, the GDP-GTP exchange factor for Cdc42, is required for invasive hyphal growth of Candida albicans. Eukaryot Cell 2:9–18

    Article  PubMed  CAS  Google Scholar 

  • Bassilana M, Hopkins J, Arkowitz RA (2005) Regulation of the Cdc42/Cdc24 GTPase module during Candida albicans hyphal growth. Eukaryot Cell 4:588–603

    Article  PubMed  CAS  Google Scholar 

  • Bauer Y, Knechtle P, Wendland J, Helfer H, Philippsen P (2004) A Ras-like GTPase is involved in hyphal growth guidance in the filamentous fungus Ashbya gossypii. Mol Biol Cell 15:4622–4632

    Article  PubMed  CAS  Google Scholar 

  • Behrens R, Nurse P (2002) Roles of fission yeast tea1p in the localization of polarity factors and in organizing the microtubular cytoskeleton. J Cell Biol 157:783–793

    Article  PubMed  CAS  Google Scholar 

  • Bensen ES, Filler SG, Berman J (2002) A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot Cell 1:787–798

    Article  PubMed  CAS  Google Scholar 

  • Bensen ES, Clemente-Blanco A, Finley KR, Correa-Bordes J, Berman J (2005) The mitotic cyclins Clb2p and Clb4p affect morphogenesis in Candida albicans. Mol Biol Cell 16:3387–3400

    Article  PubMed  CAS  Google Scholar 

  • Bi EF, Chiavetta JB, Chen H, Chen GC, Chan CSM, Pringle JR (2000) Identification of novel, evolutionarily conserved Cdc42p-interacting proteins and of redundant pathways linking Cdc24p and Cdc42p to actin polarization in yeast. Mol Biol Cell 11:773–793

    PubMed  CAS  Google Scholar 

  • Bielli P, Casavola EC, Biroccio A, Urbani A, Ragnini-Wilson A (2006) GTP drives myosin light chain 1 interaction with the class V myosin Myo2 IQ motifs via a Sec2 RabGEF-mediated pathway. Mol Microbiol 59:1576–1590

    Article  PubMed  CAS  Google Scholar 

  • Bloom K (2000) It’s a kar9ochore to capture microtubules. Nat Cell Biol 2:E96–E98

    Article  PubMed  CAS  Google Scholar 

  • Bobola N, Jansen RP, Shin TH, Nasmyth K (1996) Asymmetric accumulation of ASH1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84:699–709

    Article  PubMed  CAS  Google Scholar 

  • Bose I, Irazoqui JE, Moskow JJ, Bardes ESG, Zyla TR, Lew DJ (2001) Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p. J Biol Chem 276:7176–7186

    Article  PubMed  CAS  Google Scholar 

  • Boyce KJ, Hynes MJ, Andrianopoulos A (2001) The CDC42 homolog of the dimorphic fungus Penicillium marneffei is required for correct cell polarization during growth but not development. J Bacteriol 183:3447–3457

    Article  PubMed  CAS  Google Scholar 

  • Boyce KJ, Hynes MJ, Andrianopoulos A (2003) Control of morphogenesis and actin localization by the Penicillium marneffei RAC homolog. J Cell Sci 116:1249–1260

    Article  PubMed  CAS  Google Scholar 

  • Boyne JR, Yosuf HM, Bieganowski P, Brenner C, Price C (2000) Yeast myosin light chain, Mlc1p, interacts with both IQGAP and Class II myosin to effect cytokinesis. J Cell Sci 113:4533–4543

    PubMed  CAS  Google Scholar 

  • Bracker CE, Ruizherrera J, Bartnicki-Garcia S (1976) Structure and transformation of chitin synthetase particles (chitosomes) during microfibril synthesis in vitro. Proc Natl Acad Sci USA 73:4570–4574

    Article  PubMed  CAS  Google Scholar 

  • Bracker CE, Murphey DJ, Lopez-Franco R (1997) Laser microbeam manipulation of cell morphogenesis in growing hyphae. In: Farkas DL, Tromberg BJ (ed) Functional imaging of optical manipulation of living cells. (Proceedings of SPIE) International Society for Optical Engineering, Bellingham, Wash.

    Google Scholar 

  • Braun BR, Hoog MV, d’Enfert C, Martchenko M, Dungan J, Kuo A, et al (2005) A human-curated annotation of the Candida albicans genome. PloS Genet 1:36–57

    Article  PubMed  CAS  Google Scholar 

  • Brown JL, Jaquenoud M, Gulli MP, Chant J, Peter M (1997) Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast. Gene Dev 11:2972–2982

    PubMed  CAS  Google Scholar 

  • Brunner D, Nurse P (2000) CLIP170-like Tip1p spatially organizes microtubular dynamics in fission yeast. Cell 102:695–704

    Article  PubMed  CAS  Google Scholar 

  • Brunswick H (1924) Untersuchungen uber Geschlechts und Kern-verhaltnisse bei der Hymenomzetengattung Coprinus. Fisher, Jena

    Google Scholar 

  • Bücking-Throm E, Duntze W, Hartwell LH, Manney TR (1973) Reversible arrest of haploid yeast-cells at Initiation of DNA-Synthesis by a diffusible sex factor. Exp Cell Res 76:99–110

    Article  PubMed  Google Scholar 

  • Burbelo PD, Drechsel D, Hall A (1995) A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J Biol Chem 270:29071–29074

    Article  PubMed  CAS  Google Scholar 

  • Busch KE, Hayles J, Nurse P, Brunner D (2004) Tea2p kinesin is involved in spatial microtubule organization by transporting Tip1p on microtubules. Dev Cell 6:831–843

    Article  PubMed  CAS  Google Scholar 

  • Cabib E (2004) The septation apparatus, a chitin-requiring machine in budding yeast. Arch Biochem Biophys 426:201–207

    Article  PubMed  CAS  Google Scholar 

  • Casamayor A, Snyder M (2002) Bud-site selection and cell polarity in budding yeast. Curr Opin Microbiol 5:179–186

    Article  PubMed  CAS  Google Scholar 

  • Caviston JP, Longtine M, Pringle JR, Bi E (2003) The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol Biol Cell 14:4051–4066

    Article  PubMed  CAS  Google Scholar 

  • Chang F, Peter M (2003) Yeasts make their mark. Nat Cell Biol 5:294–299

    Article  PubMed  CAS  Google Scholar 

  • Chant J (1999) Cell polarity in yeast. Annu Rev Cell Dev Biol 15:365–391

    Article  PubMed  CAS  Google Scholar 

  • Chapa y Lazo B, Bates S, Sudbery PE (2005) CLN3 regulates hyphal morphogenesis in Candida albicans. Eukaryot Cell 4:90–94

    Article  PubMed  CAS  Google Scholar 

  • Chen GC, Kim YJ, Chan CSM (1997) The Cdc42 GTPase-associated proteins Gic1 and Gic2 are required for polarized cell growth in Saccharomyces cerevisiae. Gene Dev 11:2958–2971

    PubMed  CAS  Google Scholar 

  • Collinge AJ, Trinci APJ (1974) Hyphal tips of wild-type and spreading colonial mutants of Neurospora crassa. Arch Microbiol 99:353–368

    Article  PubMed  CAS  Google Scholar 

  • Crampin H, Finley K, Gerami-Nejad M, Court H, Gale C, Berman J, Sudbery PE (2005) Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae. J Cell Sci 118:2935–2947

    Article  PubMed  CAS  Google Scholar 

  • Cross FR (1988) DAF1, amutant gene affecting size control, pheromone arrest, and cell-cycle kineticsof Saccharomyces cerevisiae. Mol Cell Biol 8:4675–4684

    PubMed  CAS  Google Scholar 

  • Cvrckova F, Devirgilio C, Manser E, Pringle JR, Nasmyth K (1995) Ste20-like protein-kinases are required for normal localization of cell-growth and for cytokinesis in budding yeast. Gene Dev 9:1817–1830

    Article  PubMed  CAS  Google Scholar 

  • DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15:356–363

    Article  PubMed  CAS  Google Scholar 

  • Dobbelaere J, Gentry MS, Hallberg RL, Barral Y (2003) Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev Cell 4:345–357

    Article  PubMed  CAS  Google Scholar 

  • Dong YQ, Pruyne D, Bretscher A (2003) Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast. J Cell Biol 161:1081–1092

    Article  PubMed  CAS  Google Scholar 

  • Douglas LM, Alvarez FJ, McCreary C, Konopka JB (2005) Septin function in yeastmodel systems and pathogenic fungi. Eukaryot Cell 4:1503–1512

    Article  PubMed  CAS  Google Scholar 

  • Drgonova J, Drgon T, Tanaka K, Kollar R, Chen GC, Ford RA, Chan CSM, Takai Y, Cabib E (1996) Rho1p, a yeast protein at the interface between cell polarization and morphogenesis. Science 272:277–279

    Article  PubMed  CAS  Google Scholar 

  • Drgonova J, Drgon T, Roh DH, Cabib E (1999) The GTP-binding protein Rho1p is required for cell cycle progression and polarization of the yeast cell. J Cell Biol 146:373–388

    Article  PubMed  CAS  Google Scholar 

  • Etienne-Manneville S (2004) Cdc42-the centre of polarity. J Cell Sci 117:1291–1300

    Article  PubMed  CAS  Google Scholar 

  • Evangelista M (1997) Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276:118–121

    Article  PubMed  CAS  Google Scholar 

  • Evangelista M, Pruyne D, Amberg DC, Boone C, Bretscher A (2002) Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nature Cell Biol 4:32–41

    Article  PubMed  Google Scholar 

  • Evangelista M, Zigmond S, Boone C (2003) Formins: signaling effectors for assembly and polarization of actin filaments. J Cell Sci 116:2603–2611

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198:246–259

    Article  PubMed  CAS  Google Scholar 

  • France YE, Boyd C, Coleman J, Novick PJ (2006) The polarity-establishment component Bem1p interacts with the exocyst complex through the Sec15p subunit. J Cell Sci 119:876–888

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Tanaka K, Mino A, Kikyo M, Takahashi K, Shimizu K, Takai Y (1998) Rho1p-Bni1p-Spa2p interactions: implication in localization of Bni1p at the bud site and regulation of the actin cytoskeleton in Saccharomyces cerevisiae. Mol Biol Cell 9:1221–1233

    PubMed  CAS  Google Scholar 

  • Futcher B (2002) Transcriptional regulatory networks and the yeast cell cycle. Curr Opin Cell Biol 14:676–683

    Article  PubMed  CAS  Google Scholar 

  • Gao XD, Albert S, Tcheperegine SE, Burd CG, Gallwitz D, Bi EF (2003) The GAP activity of Msb3p and Msb4p for the Rab GTPase Sec4p is required for efficient exocytosis and actin organization. J Cell Biol 162:635–646

    Article  PubMed  CAS  Google Scholar 

  • Geli MI, Riezman H (1998) Endocytic internalization in yeast and animal cells: similar and different. J Cell Sci 111:1031–1037

    PubMed  CAS  Google Scholar 

  • Gierz G, Bartnicki-Garcia S (2001) A three-dimensional model of fungal morphogenesis based on the vesicle supply center concept. J Theor Biol 208:151–164

    Article  PubMed  CAS  Google Scholar 

  • Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR (1992) Unipolar cell divisions in the yeast Saccharomyces cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090

    Article  PubMed  CAS  Google Scholar 

  • Girbardt M (1957) Der Spitzenkörper von Polystictus versicolor. Planta 50:47–50

    Article  Google Scholar 

  • Girbardt M (1969) Ultrastructure of apical region of fungal hyphae. Protoplasma 67:413–441

    Article  Google Scholar 

  • Gladfelter AS, Moskow JJ, Zyla TR, Lew DJ (2001a) Isolation and characterization of effector-loop mutants of CDC42 in yeast. Mol Biol Cell 12:1239–1255

    PubMed  CAS  Google Scholar 

  • Gladfelter AS, Pringle JR, Lew DJ (2001b) The septin cortex at the yeast mother-bud neck. Curr Opin Microbiol 4:681–689

    Article  PubMed  CAS  Google Scholar 

  • Gladfelter AS, Bose I, Zyla TR, Bardes ESG, Lew DJ (2002) Septin ring assembly involves cycles of GTP loading and hydrolysis by Cdc42p. J Cell Biol 156:315–326

    Article  PubMed  CAS  Google Scholar 

  • Gladfelter AS, Kozubowski L, Zyla TR, Lew DJ (2005) Interplay between septin organization, cell cycle and cell shape in yeast. J Cell Sci 118:1617–1628

    Article  PubMed  CAS  Google Scholar 

  • Glynn J, Lustig R, Berlin A, Chang F (2001) Role of bud6p and tea1p in the interaction between actin and microtubules for the establishment of cell polarity in fission yeast. Curr Biol 11:836–845

    Article  PubMed  CAS  Google Scholar 

  • Goehring AS, Mitchell DA, Tong AHY, Keniry ME, Boone C, Sprague GF (2003) Synthetic lethal analysis implicates Ste20p, a p21-activated protein kinase, in polarisome activation. Mol Biol Cell 14:1501–1516

    Article  PubMed  CAS  Google Scholar 

  • Grove SN, Bracker CE (1970) Protoplasmic organization of hyphal tips among fungi: vesicles and Spitzenkörper. J Bacteriol 104:989–100

    PubMed  CAS  Google Scholar 

  • Grove SN, Sweigard JA (1980) Cytochalasin A inhibits spore germination and hyphal tip growth in Gilbertella persicaria. Exp Mycol 4:239–250

    Article  CAS  Google Scholar 

  • Grove SN, Bracker CE, Morre DJ (1970) An ultrastructural basis for hyphal tip growth in Pythium ultimum. Am J Bot 57:245–266

    Article  Google Scholar 

  • Gulli MP, Jaquenoud M, Shimada Y, Niederhauser G, Wiget P, Peter M (2000) Phosphorylation of the Cdc42 exchange factor Cdc24 by the PAK-like kinase Cla4 may regulate polarized growth in yeast. Mol Cell 6:1155–1167

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Roth D, Walch-Solimena C, Novick P (1999) The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J 18:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Tamanoi F, Novick P (2001) Spatial regulation of the exocyst complex by Rho1 GTPase. Nat Cell Biol 3:353–360

    Article  PubMed  CAS  Google Scholar 

  • Han GS, Liu B, Zhang J, Zuo WQ, Morris NR, Xiang X (2001) The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics. Curr Biol 11:719–724

    Article  PubMed  CAS  Google Scholar 

  • Harris SD (1999) Morphogenesis is coordinated with nuclear division in germinating Aspergillus nidulans conidiospores. Microbiology 145:2747–2756

    PubMed  CAS  Google Scholar 

  • Harris SD, Momany M (2004) Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet Biol 41:391–400

    Article  PubMed  CAS  Google Scholar 

  • Harris SD, Read ND, Roberson RW, Shaw B, Seiler S, Plamann M, Momany M (2005) Polarisome meets Spitzenkorper: microscopy, genetics, and genomics converge. Eukaryot Cell 4:225–229

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, Cullotti J, Pringle JR, Reid BJ (1974) Genetic control of the cell division cycle in yeast. Science 183:46–51

    Article  PubMed  CAS  Google Scholar 

  • Hausauer DL, Gerami-Nejad M, Kistler-Anderson C, Gale CA (2005) Hyphal guidance and invasive growth in Candida albicans require the Ras-like GTPase Rsr1p and its GTPase-activating protein Bud2p. Eukaryot Cell 4:1273–1286

    Article  PubMed  CAS  Google Scholar 

  • Hazan I, Sepulveda-Becerra M, Liu HP (2002) Hyphal elongation is regulated independently of cell cycle in Candida albicans. Mol Biol Cell 13:134–145

    Article  PubMed  CAS  Google Scholar 

  • Heath IB (1988) Evidence against a direct role for cortical actin arrays in saltatory organelle motility in hyphae of the fungus Saprolegnia Ferax. J Cell Sci 91:41–47

    Google Scholar 

  • Heath IB, Bonham M, Akram A, Gupta GD (2003) The interrelationships of actin and hyphal tip growth in the ascomycete Geotrichum candidum. Fungal Genet Biol 38:85–97

    Article  Google Scholar 

  • Horio T, Oakley BR (2005) The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 16:918–926

    Article  PubMed  CAS  Google Scholar 

  • Howard RJ (1981) Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution. J Cell Sci 48:89–103

    PubMed  CAS  Google Scholar 

  • Howard RJ, Aist JR (1980) Cytoplasmic microtubules and fungal morphogenesis: ultrastructural effects of methyl benzimidazole-2-ylcarbamate determined by freeze-substitution of hyphal tip cells. J Cell Biol 87:55–64

    Article  PubMed  CAS  Google Scholar 

  • Imamura H (1997) Bni1p and Bnr1p: downstream targets of the Rho family of small GTPases which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J 16:2745–2755

    Article  PubMed  CAS  Google Scholar 

  • Irazoqui JE, Gladfelter AS, Lew DJ (2003) Scaffold-mediated symmetry breaking by Cdc42p. Nat Cell Biol 5:1062–1070

    Article  PubMed  CAS  Google Scholar 

  • Irazoqui JE, Howell AS, Theesfeld CL, Lew DJ (2005) Opposing roles for actin in Cdc42p polarization. Mol Biol Cell 16:1296–1304

    Article  PubMed  CAS  Google Scholar 

  • Jaquenoud M, Peter M (2000) Gic2p may link activated Cdc42p to components involved in actin polarization, including Bni1p and Bud6p (Aip3p). Mol Cell Biol 20:6244–6258

    Article  PubMed  CAS  Google Scholar 

  • Johnson DI (1999) Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol Mol Biol Rev 63:54–105

    PubMed  CAS  Google Scholar 

  • Johnson DI, Pringle JR (1990) Molecular characterization of cdc42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J Cell Biol 111:143–152

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen P, Tyers M (2004) How cells coordinate growth and division. Curr Biol 14:R1014–R1027

    Article  PubMed  CAS  Google Scholar 

  • Knechtle P, Dietrich F, Philippsen P (2003) Maximal polar growth potential depends on the polarisome component AgSpa2 in the filamentous fungus Ashbyagossypii. Mol Biol Cell 14:4140–4154

    Article  PubMed  CAS  Google Scholar 

  • Knechtle P, Wendland J, Philippsen P (2006) The SH3/PH domain protein AgBoi1/2 collaborates with the Rho-Type GTPase AgRho3 to prevent nonpolar growth at hyphal tips of Ashbya gossypii. Eukaryot Cell 5:1635–1647

    Article  PubMed  CAS  Google Scholar 

  • Koch G, Tanaka K, Masuda T, Yamochi W, Nonaka H, Takai Y (1997) Association of the Rho family small GTP-binding proteins with Rho GDP dissociation inhibitor (Rho GDI) in Saccharomyces cerevisiae. Oncogene 15:417–422

    Article  PubMed  CAS  Google Scholar 

  • Kohno H (1996) Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J 15:6060–6068

    PubMed  CAS  Google Scholar 

  • Konzack S, Rischitor PE, Enke C, Fischer R (2005) The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol Biol Cell 16:497–506

    Article  PubMed  CAS  Google Scholar 

  • Kozminski KG, Beven L, Angerman E, Tong AH, Boone C, Park HO (2004) Interaction between a Ras and a Rho GTPase couples selection of a growth site to the development of cell polarity in yeast. Mol Biol Cell 15:355A

    Google Scholar 

  • Kron SJ, Gow NAR (1995) Budding yeast morphogenesis: signaling, cytoskeleton and cell-cycle. Curr Opin Cell Biol 7:845–855

    Article  PubMed  CAS  Google Scholar 

  • Kron SJ, Styles CA, Fink GR (1994) Symmetrical cell-division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol Biol Cell 5:1003–1022

    PubMed  CAS  Google Scholar 

  • Kurjan J (1993) The pheromone response pathway in Saccharomyces cerevisiae. Annu Rev Genet 27:147–179

    PubMed  CAS  Google Scholar 

  • Leberer E, Dignard D, Harcus D, Thomas DY, Whiteway M (1992) The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein beta-gamma subunits to downstream signalling components. EMBO J 11:4815–4824

    PubMed  CAS  Google Scholar 

  • Leberer E, Thomas DY, Whiteway M (1997a) Pheromone signalling and polarized morphogenesis in yeast. Curr Opin Genet Dev 7:59–66

    Article  PubMed  CAS  Google Scholar 

  • Leberer E, Wu CL, Leeuw T, FourestLieuvin A, Segall JE, Thomas DY (1997b) Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase. EMBO J 16:83–97

    Article  PubMed  CAS  Google Scholar 

  • Lechler T, Li R (1997) In vitro reconstitution of cortical actin assembly sites in budding yeast. J Cell Biol 138:95–103

    Article  PubMed  CAS  Google Scholar 

  • Lechler T, Shevchenko A, Shevchenko A, Li R (2000) Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J Cell Biol 148:363–373

    Article  PubMed  CAS  Google Scholar 

  • Lechler T, Jonsdottir GA, Klee SK, Pellman D, Li R (2001) A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. J Cell Biol 155:261–270

    Article  PubMed  CAS  Google Scholar 

  • Lew DJ, Reed SI (1993) Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J Cell Biol 120:1305–1320

    Article  PubMed  CAS  Google Scholar 

  • Lew DJ, Reed SI (1995) A cell-cycle checkpoint monitors cell morphogenesis in budding yeast. J Cell Biol 129:739–749

    Article  PubMed  CAS  Google Scholar 

  • Lillie SH, Brown SS (1994) Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin related protein, Smy1p, to the same regions of polarised growth in Saccharomyces cerevisiae. J Cell Biol 125:825–842

    Article  PubMed  CAS  Google Scholar 

  • Lippincott J, Li R (1998) Sequential assembly of myosin II, an IQGAP-like protein, and filamentous actin to a ring structure involved in budding yeast cytokinesis. J Cell Biol 140:355–366

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Styles CA, Fink GR (1993) Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262:1741–1744

    Article  PubMed  CAS  Google Scholar 

  • Lockhart SR, Daniels KJ, Zhao R, Wessels D, Soll DR (2003) Cell biology of mating in Candida albicans. Eukaryot Cell 2:49–61

    Article  PubMed  CAS  Google Scholar 

  • Loeb JDJ, Karentseva TA, Pan T, Sepulveda-Becerra M, Liu HP (1999a) Saccharomyces cerevisiae G1 cyclins are differentially involved in invasive and pseudohyphal growth independent of the filamentation mitogen-activated protein kinase pathway. Genetics 153:1535–1546

    PubMed  CAS  Google Scholar 

  • Loeb JJ, Sepulveda-Becerra M, Hazan I, Liu HP (1999b) AG1 cyclin is necessary for maintenance of filamentous growth in Candida albicans. Mol Cell Biol 19:4019–4027

    PubMed  CAS  Google Scholar 

  • Longtine MS, DeMarini DJ, Valencik ML, Al-Awar OS, Fares H, De Virgilio C, Pringle JR (1996) The septins: roles in cytokinesis and other processes. Curr Opin Cell Biol 8:106–119

    Article  PubMed  CAS  Google Scholar 

  • Longtine MS, Fares H, Pringle JR (1998) Role of the yeast Gin4p protein kinase in septin assembly and the relationship between septin assembly and septin function. J Cell Biol 143:719–736

    Article  PubMed  CAS  Google Scholar 

  • Longtine MS, Theesefield CL, McMillan JN, Weaver E, Pringle JR, Lew DJ (2000) Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae. Mol Biol 20:4049–4061

    CAS  Google Scholar 

  • Lopez-Franco R, Bartnicki-Garcia S, Bracker CE (1994) Pulsed growth of fungal hyphal tips. Proc Natl Acad Sci USA 91:12228–12232

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Franco R, Howard RJ, Bracker CE (1995) Satellite Spitzenkorper in growing hyphal tips. Protoplasma 188:85–103

    Article  Google Scholar 

  • Luo JY, Vallen EA, Dravis C, Tcheperegine SE, Drees B, Bi EF (2004) Identification and functional analysis of the essential and regulatory light chains of the only type II myosin Myo1p in Saccharomyces cerevisiae. J Cell Biol 165:843–855

    Article  PubMed  CAS  Google Scholar 

  • Mao YX, Kalb VF, Wong B (1999) Overexpression of a dominant-negative allele of SEC4 inhibits growth and protein secretion in Candida albicans. J Bacteriol 181:7235–7242

    PubMed  CAS  Google Scholar 

  • Martin R, Walther A, Wendland J (2005) Ras1-induced hyphal development in Candida albicans requires the formin Bni1. Eukaryot Cell 4:1712–1724

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Anaya C, Dickinson JR, Sudbery PE (2003) In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint. J Cell Sci 116:3423–3431

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Tanaka K, Nonaka H, Yamochi W, Maeda A, Takai Y (1994) Molecular-cloning and characterization of yeast-Rho GDP dissociation inhibitor. J Biol Chem 269:19713–19718

    PubMed  CAS  Google Scholar 

  • Mata J, Nurse P (1997) Tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell 89:939–949

    Article  PubMed  CAS  Google Scholar 

  • Matheos D, Metodiev M, Muller E, Stone D, Rose MD (2004) Pheromone-induced polarization is dependent on the Fus3p MAPK acting through the formin Bni1p. J Cell Biol 165:99–109

    Article  PubMed  CAS  Google Scholar 

  • Metodiev MV, Matheos D, Rose MD, Stone DE (2002) Regulation of MAPK function by direct interaction with the mating-specific G alpha in yeast. Science 296:1483–1486

    Article  PubMed  CAS  Google Scholar 

  • Miller PJ, Johnson DI (1994) Cdc42P GTPase is involved in controlling polarized cell growth in Schizosaccharomyces pombe. Mol Cell Biol 14:1075–1083

    PubMed  CAS  Google Scholar 

  • Mitchison JM, Nurse P (1985) Growth in cell length in the fission yeast Schizosaccharomyces pombe. J Cell Sci 75:357–376

    PubMed  CAS  Google Scholar 

  • Momany M, Zhao J, Lindsey R, Westfall PJ (2001) Characterization of the Aspergillus nidulans septin (asp) gene family. Genetics 157:969–977

    PubMed  CAS  Google Scholar 

  • Moseley JB, Sagot I, Manning AL, Xu YW, Eck J, Pellman D, Goode BL (2004) A conserved mechanism for Bni1-and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin. Mol Biol Cell 15:896–907

    Article  PubMed  CAS  Google Scholar 

  • Naqvi SN, Zahn R, Mitchell DA, Stevenson BJ, Munn AL (1998) The WASp homologue Las17p functions with the WIP homologue End5p/verprolin and is essential for endocytosis in yeast. Curr Biol 8:959–962

    Article  PubMed  CAS  Google Scholar 

  • Nash R, Tokiwa G, Anand S, Erikson K, Futcher AB (1988) The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J 7:4335–4346

    PubMed  CAS  Google Scholar 

  • Nern A, Arkowitz RA (1999) A Cdc24p-Far1p-G beta gamma protein complex required for yeast orientation during mating. J Cell Biol 144:1187–1202

    Article  PubMed  CAS  Google Scholar 

  • Nonaka H, Tanaka K, Hirano H, Fujiwara T, Kohno H, Umikawa M, Mino A, Takai Y (1995) A downstream target of Rho1 small GTP-binding protein is Pkc1, a homolog of Protein Kinase C, which leads to activation of the map kinase cascade in Saccharomyces cerevisiae. EMBO J 14:5931–5938

    PubMed  CAS  Google Scholar 

  • Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for posttranslational events in the yeast secretory pathway. Cell 21:205–215

    Article  PubMed  CAS  Google Scholar 

  • Odds FC (1985) Morphogenesis in Candida albicans. Crit Rev Microbiol 12:45–93

    PubMed  CAS  Google Scholar 

  • Ortiz D, Medkova M, Walch-Solimena C, Novick P (2002) Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J Cell Biol 157:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Osman MA, Cerione RA (1998) Iqg1p, a yeast homologue of the mammalian IQGAPs, mediates Cdc42p effects on the actin cytoskeleton. J Cell Biol 142:443–455

    Article  PubMed  CAS  Google Scholar 

  • Osman MA, Konopka JB, Cerione RA (2002) Iqg1p links spatial and secretion landmarks to polarity and cytokinesis. J Cell Biol 159:601–611

    Article  PubMed  CAS  Google Scholar 

  • Ozaki-Kuroda K, Yamamoto Y, Nohara H, Kinoshita M, Fujiwara T, Irie K, Takai Y (2001) Dynamic localization and function of Bni1p at the sites of directed growth in Saccharomyces cerevisiae. Mol Cell Biol 21:827–839

    Article  PubMed  CAS  Google Scholar 

  • Ozbudak EM, Becskei A, Oudenaarden A van (2005) A system of counteracting feedback loops regulates Cdc42p activity during spontaneous cell polarization. Developmental Cell 9:565–571

    Article  PubMed  CAS  Google Scholar 

  • Park HO, Bi EF, Pringle JR, Herskowitz I (1997) Two active states of the Ras-related Bud1/Rsr1 protein bind to different effectors to determine yeast cell polarity. Proc Natl Acad Sci USA 94:4463–4468

    Article  PubMed  CAS  Google Scholar 

  • Park HO, Sanson A, Herskowitz I (1999) Localization of Bud2p, a GTPase-activating protein necessary for programming cell polarity in yeast to the presumptive bud site. Genes 13:1912–1917

    CAS  Google Scholar 

  • Park HO, Kang PJ, Rachfal AW (2002) Localization of the Rsr1/Bud1 GTPase involved in selection of a proper growth site in yeast. J Biol Chem 277:26721–26724

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB (2001) SNAREs and the specificity of membrane fusion. Trends Cell Biol 11:99–101

    Article  PubMed  CAS  Google Scholar 

  • Peter M, Herskowitz I (1994) Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science 265:1228–1231

    Article  PubMed  CAS  Google Scholar 

  • Peter M, Gartner A, Horecka J, Ammerer G, Herskowitz I (1993) FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell 73:747–750

    Article  PubMed  CAS  Google Scholar 

  • Peter M, Neiman AM, Park HO, van Lohuizen M, Herskowitz I (1996) Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J 15:7046–7059

    PubMed  CAS  Google Scholar 

  • Peterson J, Zheng Y, Bender L, Myers A, Cerione R, Bender A (1994) Interactions between the bud emergence proteins Bem1p and Bem2p and RHO-type GTPases in yeast. J Cell Biol 127:1395–1406

    Article  PubMed  CAS  Google Scholar 

  • Philippsen P, Kaufmann A, Schmitz HP (2005) Homologues of yeast polarity genes control the development of multinucleated hyphae in Ashbya gossypii. Curr Opin Microbiol 8:370–377

    Article  PubMed  CAS  Google Scholar 

  • Pringle J, Bi E, Harkins HA, Zahner JE, De Virgilio C, Chant J, Corrado K, Fares H (1995) Establishment of cell polarity in yeast. Cold Spring Harbor Symp Quant Biol 60:729–744

    PubMed  CAS  Google Scholar 

  • Pruyne D, Bretscher A (2000a) Polarization of cell growth in yeast II. The role of the actin cytoskeleton. J Cell Sci 113:571–585

    PubMed  CAS  Google Scholar 

  • Pruyne D, Bretscher A (2000b) Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J Cell Sci 113:365–375

    PubMed  CAS  Google Scholar 

  • Pruyne D, Legesse-Miller A, Gao LN, Dong YQ, Bretscher A (2004) Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 20:559–591

    Article  PubMed  CAS  Google Scholar 

  • Punt PJ, Seiboth B, Weenink XO, Zeijl C van, Lenders M, Konetschny C, Ram AFJ, Montijn R, Kubicek CP, Hondel CAMJ van den (2001) Identification and characterization of a family of secretion-related small GTPase-encoding genes from the filamentous fungus Aspergillus niger: a putative SEC4 homologue is not essential for growth. Mol Microbiol 41:513–525

    Article  PubMed  CAS  Google Scholar 

  • Qadota H, Python CP, Inoue SB, Arisawa M, Anraku Y, Zheng Y, Watanabe T, Levin DE, Ohya Y (1996) Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science 272:279–281

    Article  PubMed  CAS  Google Scholar 

  • Read ND, Hickey PC (2001) The Vesicle trafficking network and tip growth in fungal hyphae. In: Cell Biology of plant and fungal tip growth, ed. A. Geitman. IOS Press. 137–147.

    Google Scholar 

  • Riquelme M, Reynaga-Pena CG, Gierz G, Bartnicki-Garcia S (1998) What determines growth direction in fungal hyphae? Fungal Genet Biol 24:101–109

    Article  PubMed  CAS  Google Scholar 

  • Riquelme M, Roberson RW, McDaniel DP, Bartnicki-Garcia S (2002) The effects of ropy-1 mutation on cytoplasmic organization and intracellular motility in mature hyphae of Neurospora crassa. Fungal Genet Biol 37:171–179

    Article  PubMed  CAS  Google Scholar 

  • Roumanie O, Wu H, Molk JN, Rossi G, Bloom K, Brennwald P (2005) Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex. J Cell Biol 170:583–594

    Article  PubMed  CAS  Google Scholar 

  • Sagot I, Klee SK, Pellman D (2002) Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol 4:42–50

    PubMed  CAS  Google Scholar 

  • Santos B, Snyder M (1997) Targeting of chitin synthase 3 to polarised growth sites in Saccharomyces cereivisiae requires Chs5p and Myo2p. J Cell Biol 136:95–110

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Bickle M, Beck T, Hall MN (1997) The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 88:531–542

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Bowers B, Varma A, Roh DH, Cabib E (2002) In budding yeast, contraction of the actomyosin ring and formation of the primary septum at cytokinesis depend on each other. J Cell Sci 115:293–302

    PubMed  CAS  Google Scholar 

  • Schmitz HP, Kaufmann A, Kohli M, Laissue PP, Philippsen P (2006) From function to shape: a novel role of a forming in morphogenesis of the fungus Ashbya gossypii. Mol Biol Cell 17:130–145

    Article  PubMed  CAS  Google Scholar 

  • Schott D, Ho J, Pruyne D, Bretscher A (1999) The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J Cell Biol 147:791–807

    Article  PubMed  CAS  Google Scholar 

  • Segal M, Bloom K (2001) Control of spindle polarity and orientation in Saccharomyces cerevisiae. Trends Cell Biol 11:160–166

    Article  PubMed  CAS  Google Scholar 

  • Segal M, Bloom K, Reed SI (2000) Bud6 directs sequential microtubule interactions with the bud tip and bud neck during spindle morphogenesis in Saccharomyces cerevisiae. Mol Biol Cell 11:3689–3702

    PubMed  CAS  Google Scholar 

  • Segall JE (1993) Polarization of yeast-cells in spatial gradients of alpha-mating factor. Proc Natl Acad Sci USA 90:8332–8336

    Article  PubMed  CAS  Google Scholar 

  • Seiler S, Plamann M, Schliwa M (1999) Kinesin and dynein mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora. Curr Biol 9:779–785

    Article  PubMed  CAS  Google Scholar 

  • Seshan A, Amon A (2004) Linked for life: temporal and spatial coordination of late mitotic events. Curr Opin Cell Biol 16:41–48

    Article  PubMed  CAS  Google Scholar 

  • Shannon KB, Li R (2000) A myosin light chain mediates the localization of the budding yeast IQGAP-like protein during contractile ring formation. Curr Biol 10:727–730

    Article  PubMed  CAS  Google Scholar 

  • Sharpless KE, Harris SD (2002) Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol Biol Cell 13:469–479

    Article  PubMed  CAS  Google Scholar 

  • Sheu YJ, Barral Y, Snyder M (2000) Polarized growth controls cell shape and bipolar bud site selection in Saccharomyces cerevisiae. Mol Cell Biol 20:5235–5247

    Article  PubMed  CAS  Google Scholar 

  • Sheu YJ, Santos B, Fortin N, Costigan C, Snyder M (1998) Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis. Mol Cell Biol 18:4053–4069

    PubMed  CAS  Google Scholar 

  • Shimada Y, Gulli MP, Peter M (2000) Nuclear sequestration of the exchange factor Cdc24 by Far1 regulates cell polarity during yeast mating. Nat Cell Biol 2:117–124

    Article  PubMed  CAS  Google Scholar 

  • Shimada Y, Wiget P, Gulli MP, Bi ER, Peter M (2004) The nucleotide exchange factor Cdc24p may be regulated by auto-inhibition. EMBO J 23:1051–1062

    Article  PubMed  CAS  Google Scholar 

  • Sia RAL, Herald HA, Lew DJ (1996) Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast. Mol Biol Cell 7:1657–1666

    PubMed  CAS  Google Scholar 

  • Sil A, Herskowitz I (1996) Identification of an asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84:711–722

    Article  PubMed  CAS  Google Scholar 

  • Smith GR, Givan SA, Cullen P, Sprague GF (2002) GTPase-activating proteins for Cdc42. Eukaryot Cell 1:469–480

    Article  PubMed  CAS  Google Scholar 

  • Snyder M (1989) The spa2 protein of yeast localizes to sites of cell-growth. J Cell Biol 108:1419–1429

    Article  PubMed  CAS  Google Scholar 

  • Soll DR, Herman MA, Staebell MA (1985) The involvement of cell wall expansion in the two modes of mycelium formation of Candida albicans. J Gen Microbiol 131:2367–2375

    PubMed  CAS  Google Scholar 

  • Stevenson BJ, Ferguson B, Devirgilio C, Bi E, Pringle JR, Ammerer G, and Sprague GF (1995) Mutation of Rga1, which encodes a putative GTPase-activating protein for the polarity-establishment protein Cdc42p, activates the pheromone-response pathway in the yeast Saccharomyces cerevisiae. Gene Dev 9:2949–2963

    Article  PubMed  CAS  Google Scholar 

  • Sudbery PE (2001) The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localisation. Mol Microbiol 41:19–31

    Article  PubMed  CAS  Google Scholar 

  • Sudbery PE, Goodey AR, Carter BLC (1980) Genes that control cell proliferation in the yeast Saccharomyces cerevisiae. Nature 288:401–404

    Article  PubMed  CAS  Google Scholar 

  • Sudbery PE, Gow NAR, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12:317–324

    Article  PubMed  CAS  Google Scholar 

  • Tcheperegine SE, Gao XD, Bi E (2005) Regulation of cell polarity by interactions of Msb3 and Msb4 with Cdc42 and polarisome components. Mol Cell Biol 25:8567–8580

    Article  PubMed  CAS  Google Scholar 

  • Terbush DR, Maurice T, Roth D, Novick P (1996) The exocyst is a multi-protein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J 15:6483–6494

    PubMed  CAS  Google Scholar 

  • tir-Lande A, Gildor T, Kornitzer D (2005) Role for the SCF CDC4 ubiquitin ligase in candida albicans morphogenesis. Mol Biol Cell 16:2772–2785

    Article  CAS  Google Scholar 

  • Torralba S, Raudaskoski M, Pedregosa AM, Laborda F (1998) Effect of cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans. Microbiology 144:45–53

    PubMed  CAS  Google Scholar 

  • Trinci APJ (1973) Growth of wild-type and spreading colonial mutants of Neurospora crassa in batch culture and on agar medium. Arch Mikrobiol 91:113–126

    Article  PubMed  CAS  Google Scholar 

  • Umeyama T, Kaneko A, Nagai Y, Hanaoka N, Tanabe K, Takano Y, Niimi M, Uehara Y (2005) Candida albicans protein kinase CaHsl1p regulates cell elongation and virulence. Mol Microbiol 55:381–395

    Article  PubMed  CAS  Google Scholar 

  • Umeyama T, Kaneko A, Niimi M, Uehara Y (2006) Repression of CDC28 reduces the expression of the morphology-related transcription factors, Efg1p, Nrg1p, Rbf1p, Rim101p, Fkh2p and Tec1p and induces cell elongation in Candida albicans. Yeast 23:537–552

    Article  PubMed  CAS  Google Scholar 

  • Ushinsky SC, Harcus D, Ash J, Dignard D, Marcil A, Morchhauser J, Thomas DY, Whiteway M, Leberer E (2002) CDC42 is required for polarized growth in the human pathogen Candida albicans. Eukaryot Cell 1:95–104

    Article  PubMed  CAS  Google Scholar 

  • Vallen EA, Caviston J, Bi E (2000) Roles of Hof1p, Bni1p, Bnr1p, and Myo1p in cytokinesis in Saccharomyces cerevisiae. Mol Biol Cell 11:593–611

    PubMed  CAS  Google Scholar 

  • Valtz N, Peter M, Herskowitz I (1995) FAR1 is required for oriented polarization of yeast cells in response to mating pheromones. J Cell Biol 131:863–873

    Article  PubMed  CAS  Google Scholar 

  • Verde F, Mata J, Nurse P (1995) Fission yeast cell morphogenesis — identification of new genes and analysis of their role during the cell cycle. J Cell Biol 131:1529–1538

    Article  PubMed  CAS  Google Scholar 

  • Versele M, Thorner J (2004) Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4. J Cell Biol 164:701–715

    Article  PubMed  CAS  Google Scholar 

  • Virag A, Griffiths AJF (2004) A mutation in the Neurospora crassa actin gene results in multiple defects in tip growth and branching. Fungal Genet Biol 41:213–225

    Article  PubMed  CAS  Google Scholar 

  • Virag A, Harris SD (2006a) Functional characterization of Aspergillus nidulans homologues of Saccharomyces cerevisiae Spa2 and Bud6. Eukaryot Cell 5:881–895

    Article  PubMed  CAS  Google Scholar 

  • Virag A, Harris SD (2006b) The Spitzenkorper: a molecular perspective. Mycol Res 110:4–13

    Article  PubMed  CAS  Google Scholar 

  • Walch-Solimena C, Collins RN, Novick PJ (1997) Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-golgi vesicles. J Cell Biol 137:1495–1509

    Article  PubMed  CAS  Google Scholar 

  • Walther A, Wendland J (2007) Hyphal growth and virulence. In: Brakhage A (ed) The Mycota: hyphal growth and virulence. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Walworth NC, Brennwald P, Kabcenell AK, Garrett M, Novick P (1992) Hydrolysis of GTP by Sec4 protein plays an important role in vesicular transport and is stimulated by a GTPase-activating protein in Saccharomyces cerevisiae. Mol Cell Biol 12:2017–2028

    PubMed  CAS  Google Scholar 

  • Warenda AJ, Konopka JB (2002) Septin function in Candida albicans morphogenesis. Mol Biol Cell 13:2732–2746

    Article  PubMed  CAS  Google Scholar 

  • Wedlich-Soldner R, Altschuler S, Wu L, Li R (2003) Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299:1231–1235

    Article  PubMed  CAS  Google Scholar 

  • Wedlich-Soldner R, Wai SC, Schmidt T, Li R (2004) Robust cell polarity is a dynamic state established by coupling transport and GTPase signaling. J Cell Biol 166:889–900

    Article  PubMed  CAS  Google Scholar 

  • Wendland J, Philippsen P (2001) Cell polarity and hyphal morphogenesis are controlled by multiple Rho-protein modules in the filamentous ascomycete Ashbya gossypii. Genetics 157:601–610

    PubMed  CAS  Google Scholar 

  • Wendland J, Walther A (2005) Ashbya gossypii: a model for fungal developmental biology. Nat Rev Microbiol 3:421–429

    Article  PubMed  CAS  Google Scholar 

  • Whiteway M, Dignard D, Thomas DY (1992) Dominant negative selection of heterologous genes — isolation of Candida albicans genes that interfere with Saccharomyces cerevisiae mating factor-induced cell-cycle arrest. Proc Natl Acad Sci USA 89:9410–9414

    Article  PubMed  CAS  Google Scholar 

  • Wiget P, Shimada Y, Butty AC, Bi ER, Peter M (2004) Sitespecific regulation of the GEF Cdc24p by the scaffold protein Far1p during yeast mating. EMBO J 23:1063–1074

    Article  PubMed  CAS  Google Scholar 

  • Wightman R, Bates S, Amnorrattapan P, Sudbery PE (2004) In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization. J Cell Biol 164:581–591

    Article  PubMed  CAS  Google Scholar 

  • Winder SJ, Ayscough KR (2005) Actin-binding proteins. J Cell Sci 118:651–654

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Lytvyn V, Thomas D, Leberer E (1997) The phosphorylation site for Ste20p-like protein kinase is essential for the function of myosin-I in yeast. J Biol Chem 272:30623–30626

    Article  PubMed  CAS  Google Scholar 

  • Yaar L, Mevarech M, Koltin Y (1997) A Candida albicans RAS-related gene (CaRSR1) is involved in budding, cell morphogenesis and hypha development. Microbiology 143:3033–3044

    PubMed  CAS  Google Scholar 

  • Zajac A, Sun XL, Zhang J, Guo W (2005) Cyclical regulation of the exocyst and cell polarity determinants for polarized cell growth. Mol Biol Cell 16:1500–1512

    Article  PubMed  CAS  Google Scholar 

  • Zhang XY, Bi EF, Novick P, Du LL, Kozminski KG, Lipschutz JH, Guo W (2001) Cdc42 interacts with the exocyst and regulates polarized secretion. J Biol Chem 276:46745–46750

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Wang Y, Wang Y (2003) CaSPA2 is important for polarity establishment and maintenance in Candida albicans. Mol Microbiol 49:1391–1405

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Wang Y, Wang Y (2004) Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J 23:1845–1856

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Cerione R, Bender A (1994) Control of the yeast bud-site assembly GTPase Cdc42 — catalysis of guanine-nucleotide exchange by Cdc24 and stimulation of GTPase activity by Bem3. J Biol Chem 269:2369–2372

    PubMed  CAS  Google Scholar 

  • Zheng Y, Bender A, Cerione R (1995) Interactions among proteins involved in bud-site selection and bud-site assembly in Saccharomyces cerevisiae. J Biol Chem 270:626–630

    Article  PubMed  CAS  Google Scholar 

  • Zhu GF, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406:90–94

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sudbery, P., Court, H. (2007). Polarised Growth in Fungi. In: Howard, R.J., Gow, N.A.R. (eds) Biology of the Fungal Cell. The Mycota, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70618-2_6

Download citation

Publish with us

Policies and ethics