Skip to main content

Part of the book series: Principles and Practice ((PRINCIPLES))

Abstract

Plant cell-based bioprocessing is the use of plant cell and tissue cultures for the production of biologically active substances (low molecular secondary metabolites and recombinant proteins). The most significant advantage of plant cell culture over the traditionally grown whole wild plant or engineered transgenic plant is the sterile production of metabolites under defined controlled conditions independent of climatic changes and soil conditions, which means that variations in product yield and quality can be better avoided. Furthermore, regulatory requirements such as the cGMP standards, which have to be adhered to in the early stages of pharmaceutical production, are more easily met.

Moreover, plant cells are capable of performing complex posttranslational processing, which is a precondition for heterologous protein expression. When compared with mammalian cells, which currently dominate in the commercial protein manufacture, plant cell cultures as alternative expression systems guarantee safer processes because there is a lower risk of contamination by mammalian viruses, pathogens, and toxins. In addition to this considerable advantage, the process costs can also be substantially reduced. This is due to the fact that plant cell culture medium is very simple in composition and therefore relatively inexpensive.

This chapter provides an overview of culture types, techniques, and suitable bioreactors used to produce secondary metabolites and recombinant proteins in plant cells. We describe plant cell culture basics, discuss key topics relevant to plant cell bioreactor engineering with application examples, and give an overview of approaches to improving productivity of plant cell-based processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AAT:

alpha-1-antitrypsin

ABA:

abscisic acid

Ala:

alanine

Arg:

arginine

Asn:

asparagine

B:

boron

BAP:

6-benzylaminopurine

BMP:

biomass productivity

BSA:

bovine serum albumin

BY-2:

Bright Yellow 2

CER:

carbon dioxide evolution rate

Co:

cobalt

CO2 :

carbon dioxide

Cu:

copper

Cys:

cysteine

C2H4 :

ethylene

DCM:

dry cell mass (dry biomass concentration)

DMSO:

dimethyl sulphoxide

DS:

dry substance

d:

day

dw:

dry weight

EDTA:

ethylenediamine tetraacetic acid

EPO:

erythropoietin

FCM:

fresh cell mass (fresh biomass concentration)

cGMP:

current Good Manufacturing Practice

f:

final

fw:

fresh weight

g:

gram

GA3 :

gibberellin A3

GA4 :

gibberellin A4

GA7 :

gibberellin A7

GI:

growth index

GM-CSF:

granulocyte macrophage colony stimulating factor

His:

histidine

h:

hour

HBsAg:

Hepatitis B surface antigen

HSA:

human serum albumin

H2O2 :

hydrogen peroxide

I:

iodine

i:

initial

IAA:

indole-3-acetic acid

IBA:

indole-3-butyric acid

Ile:

isoleucine

IPC:

In-Process control

JA:

jasmonic acid

kDa:

kilodalton

k La:

oxygen transfer coefficient

klux:

kilolux

KNO3 :

potassium nitrate

L:

Liter

l-DOPA:

3,4-dihydroxyphenylalanine

Leu:

leucine

MCB:

master cell bank

MeJA:

methyl jasmonate

Met:

methionine

mg:

milligram

min:

minute

mm:

millimeter

Mn:

manganese

Mo:

molybdenum

MS:

medium Murashige and Skoog medium

NAA:

naphthaleneacetic acid

NaCl:

sodium chloride

NT-1:

Nicotiana tabacum 1

OUR:

oxygen uptake rate

O2 :

oxygen

pCV:

packed cell volume

pCO2 :

part of dissolved carbon dioxide in the medium

pO2 :

part of dissolved oxygen in the medium

PEG:

polyethyleneglycol

PMP:

plant-made pharmaceutical

PVP:

polyvinylpyrrolodine

PVS2:

plant vitrification solution 2

r:

recombinant

RA:

rosmarinic acid

Ri:

root-inducing

rpm:

revolution per minute

T-DNA:

transfer DNA

t:

cultivation time

TSP:

total soluble protein

tx:

point x in time

V:

volume

VEGF:

vascular endothelial growth factor

vir :

virulence

vvm:

volumes per volume per minute

W:

watt

WCB:

working cell bank

Zn:

zinc

2,4-D:

2,4-dichlorophenoxyacetic acid

2,4,5-T:

2,4,5-trichlorophenoxyacetic acid

μm:

micrometer

μmole:

micromole

°C:

degree Centrigrade

References

  • Abdullah M, Ariff A, Marziah M, Ali A, Lajis N (2000) Strategies to overcome foaming and wall growth during the cultivation of Morinda elliptica cell suspension culture in a stirred-tank bioreactor. Plant Cell Organ Cult 60:205–212

    Article  CAS  Google Scholar 

  • Bais HP, Suresh B, Raghavarao KSMS, Ravishankar GA (2002) Performance of hairy root cultures of Cichorium intybus L. in bioreactors of different configurations. In Vitro Plant 38:573–580

    Article  CAS  Google Scholar 

  • Bates TR, Lynch JP (1996) Stimulation of hairy root elongation in Arabidopsis thaliana by low phosphorous availability. Plant Cell Environ 19:529–538

    Article  CAS  Google Scholar 

  • Benson EE, Lynch PT, Stacey GN (1998) Advances in plant cryopreservation technology: Current applications in crop plant biotechnology. AgBiotech News Inf 5:133N–142N

    Google Scholar 

  • Bentebibel S (2003) Estudio de la produccion de taxanos por cultivos de células en suspensio e immovilizadas de Taxus baccata. PhD Thesis, University of Barcelona

    Google Scholar 

  • Bentebibel S, Moyano E, Palazón J, Cusidó RM, Bonfill M, Eibl R, Pinol MT (2005) Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnol Bioeng 89:647–655

    Article  PubMed  CAS  Google Scholar 

  • Bergmann L (1967) Wachstum grüner Suspensionskulturen von Nicotiana tabacum var. “Samsun” mit CO2 als Kohlenstoffquelle. Planta 74:243–249

    Article  CAS  Google Scholar 

  • Bhojwani SS, Razdan MK (1983) Developments in Group Science 5. Elsevier, Amsterdam

    Google Scholar 

  • Bidney D, Scelonge C, Martich J, Burrus M, Sims L, Huffmann G (1992) Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol Biol 18:301–313

    Article  PubMed  CAS  Google Scholar 

  • Bordonaro JL, Curtis WR (2000) Inhibitory role of root hairs on transport within root culture bioreactors. Biotechnol Bioeng 70:176–86

    Article  PubMed  CAS  Google Scholar 

  • Calderón AA, Zapata JM, Ros Barceló A (1994) Differential expression of a cell wall-localized peroxidase isoenzyme capable of oxidizing 4-hydroxystilbenes during the cell culture of grapevine (Vitis vinifera cv. Airen and Monastrell). Plant Cell Tissue Organ Cult 37:121–127

    Article  Google Scholar 

  • Carvalho EB, Holihan S, Pearsall B, Curtis WR (1997) Effect of root morphology on reactor design and operation for production of chemicals. In: Doran PM (ed) Hairy Roots: Culture and Application. Harwood Academic, Amsterdam, pp 151–167

    Google Scholar 

  • Carvalho EB, Curtis WR (1998) Characterization of fluid-flow resistance in root cultures with a convective flow tubular bioreactor. Biotechnol Bioeng 60:375–384

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay S, Mehra RS, Srivastava AK, Bhojwani SS, Bisaria VS (2003) Effect of major nutrients on podophyllotoxin production in Podophyllum hexandrum suspension cultures. Appl Microbiol Biotechnol 60:541–546

    PubMed  CAS  Google Scholar 

  • Chattopadhyay S, Farkya S, Srivastava AK, Bisaria VS (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol Bioproc Eng 7:138–149

    Article  CAS  Google Scholar 

  • Chilton MD, Tepfer D, Petit A, David C, Casse-Delbart F, Tempe J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of host plant cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  • Choi HK, Kim SI, Son JS, Hong SS, Lee HS, Chung IS, Lee HJ (2000) Intermittent maltose feeding enhances paclitaxel production in suspension culture of Taxus chinensis cells. Biotechnol Lett 22:1793–1796

    Article  CAS  Google Scholar 

  • Cuperus S, Rouvinez V, Eibl R, Kneubühl M, Müller J, Hühn T, Amadó R (2006) Potential of the BioWave reactor for plant cell-based bioprocesses: V. vinifera cell suspension culture and their metabolites as a case study. In: Sorvari S, Toldi O (eds) Proceedings for Second International Conference on Bioreactor Technology in Cell, Tissue Culture and Biomedical Applications, Saariselkä, Lapland, 27–31 March 2006

    Google Scholar 

  • Curtis WR (2004) Growing cells in a reservoir formed of a flexible sterile plastic liner. United States Patent, 6,709,862 B2

    Google Scholar 

  • Curtis WR, Emery A (1993) Plant cell suspension culture rheology. Biotechnol Bioeng 42:520–526

    Article  PubMed  CAS  Google Scholar 

  • Curtis WR (2000) Hairy roots, bioreactor growth. In: Spier RE (ed). Encyclopedia of Cell Technology, vol 2. Wiley VCH, New York, pp 827–841

    Google Scholar 

  • Davioud E, Kan C, Hamon J, Tempé J, Husson HP (1989) Production of indole alkaloids by in vitro root cultures from Catharanthus trichophyllus. Phytochem 28:2675–2680

    Article  CAS  Google Scholar 

  • Decker EL, Reski R (2004) The moss bioreactor. Curr Opin Plant Biol 7:166–170

    Article  PubMed  CAS  Google Scholar 

  • Deus-Neumann B, Zenk HM (1984) Instability of indole alkaloid production in Catharanthus roseus cells in suspension cultures. Planta Med 50:427–431

    Article  PubMed  CAS  Google Scholar 

  • DiIorio AA, Cheetham RD, Weathers PJ (1992) Carbon dioxide improves the growth of hairy roots cultured on solid medium and in nutrient mists. Appl Microbiol Biotechnol 37:463–467

    Article  CAS  Google Scholar 

  • Do CB, Cormier F (1991) Effects of low nitrate and high sugar concentrations on anthocyanin content and composition of grape (Vitis vinifera) cell suspensions. Plant Cell Rep 9:500–504

    CAS  Google Scholar 

  • Doran PM (2002) Properties and applications of hairy root cultures. In: Oksman-Caldentey KM, Barz WH (eds) Plant Biotechnology and Transgenic Plants. Marcel Dekker, New York, pp 143–161

    Google Scholar 

  • Doran PM (1993) Design of reactors for plant cells and organs. Adv Biochem Eng 48:115–168

    Google Scholar 

  • Dubuis D (1994) Design and scale-up of bubble-free fluidised bed reactors for plant cell cultures. PhD Thesis, Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  • Ducos JP, Lambot C, Pètiard V (2007) Bioreactors for coffee mass propagation by somatic embryogenesis. Int J Dev Biol 1:1–12

    Google Scholar 

  • Eibl R, Eibl D (2002) Bioreactors for plant cell and tissue cultures. In: Oksman-Caldentey KM, Barz WH (eds) Plant Biotechnology and Transgenic Plants. Marcel Dekker, New York, pp 163–199

    Google Scholar 

  • Eibl R, Hans D, Warlies S, Lettenbauer C, Eibl D (1999) Einsatz eines Taumelreaktorsystems mit interner Beleuchtung. BioWorld 2:10–12

    Google Scholar 

  • Eibl R, Eibl D (2006) Design and use of the Wave Bioreactor for plant cell culture. In: Dutta Gupta S, Ibaraki Y (eds) Plant Tissue Culture Engineering, Series: Focus on Biotechnology, vol 6. Springer, Dordrecht, pp 203–227

    Google Scholar 

  • Eibl R, Eibl D (2008) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev, DOI 10.1007/s 11101-007-9083-z

    Google Scholar 

  • Eibl R, Hans D, Eibl D (1996) Vergleichende Untersuchungen zur Kultivierung pflanzlicher Zellen in Laborbioreaktoren. In: iba (ed) Proceedings zum 8. Heiligenstädter Kolloquium “Technische Systeme für Biotechnologie und Umwelt”, Heiligenstadt, Germany, pp 100–105

    Google Scholar 

  • Endress R (1994) Plant Cell Biotechnology. Springer, Berlin, Heidelberg New York

    Google Scholar 

  • Evans DA, Sharp WR, Ammirato PV, Yamada Y (1983) Handbook of Plant Cell Culture, vol 1. Macmillan, New York

    Google Scholar 

  • Evans D, Coleman J, Kearns A (2003) Plant Cell Culture. BIOS Scientific, Abingdon

    Google Scholar 

  • Evans J (2006) Plant-Derived Drug. http://www.rsc.org/chemistryworld/News/2006/February/07020602.asp. Cited 10 Apr 2007

  • Fischer U, Santore UW, Hüsemann W, Barz W, Alfermann AW (1995) Semicontinuous cultivation of photoautotrophic cell suspension cultures in a 20 L airlift-reactor. Plant Cell Tissue Organ Cult 38:123–134

    Article  Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158

    Article  PubMed  CAS  Google Scholar 

  • Flores HE (1987) Use of plant cells and organ culture in the production of biological chemicals. In: LeBaron HM, Mumma RO, Honeycutt RC, Duesing JH (eds) Biotechnology in Agricultural Chemistry. ACS Symp Ser 334, Washington, pp 66–86

    Google Scholar 

  • Flores HE, Curtis WR (1992) Approaches to understanding and manipulating the biosynthetic potential of plant roots. Ann NY Acad Sci 665:188–209

    Article  PubMed  CAS  Google Scholar 

  • Fowler MW (1988) Problems in commercial exploitation of plant cell cultures. In: Bock B, Marsh J (eds) Application of Plant Cell and Tissue Culture. Ciba Foundation Symposium 137. Wiley, Chichester, pp 239–253

    Chapter  Google Scholar 

  • Fujita H, Hara Y, Suga C, Morimoto T (1981) Production of shikonin derivates by cell suspension cultures of Lithospermum erythrorhizon II: A new medium for the production of shikonin derivates. Plant Cell Rep 1:61–63

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojimak K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Georgiev M, Pavlov A, Bley T (2006) Betalains by transformed Beta vulgaris roots in stirred tank bioreactor: batch and fed-batch process. In: FinMed (ed) Proceedings for Second International Conference on Bioreactor Technology in Cell, Tissue Culture and Biomedical Applications, Saariselkä, Lapland, p 35

    Google Scholar 

  • Girard LS, Fabis MJ, Bastin M, Courtois D, Pétiard V, Koprowski H (2006) Expression of a human anti-rabies virus monoclonal antibody in tobacco cell culture. BBRC 345:602–607

    PubMed  CAS  Google Scholar 

  • Glicklis R, Mills D, Sitton D, Stortelder W, Merchuk JC (1998) Polysaccharide production by plant cells in suspension: Experiments and mathematical modelling. Biotechnol Bioeng 57:732–740

    Article  PubMed  CAS  Google Scholar 

  • Gorr G, Wagner S (2005) Humanized glycosylation: Production of biopharmaceuticals in a moss bioreactor. In: Knäblein J (ed) Modern Biopharmaceuticals, vol 3. Wiley VCH, Weinheim, pp 919–929

    Chapter  Google Scholar 

  • Guardiola J, Iborra JL, Cánovas M (1994) A model that links growth and secondary metabolite production in plant cell suspension cultures. Biotechnol Bioeng 46:291–297

    Article  Google Scholar 

  • Hall R, Yeoman M (1987) Intercellular and intercultural heterogeneity in secondary metabolite accumulation in cultures of Catharanthus roseus following cell line selection. J Exp Bot 38:1391–1398

    Article  CAS  Google Scholar 

  • Hamill JD, Lidgett AJ (1997) Hairy root cultures: Opportunities and key protocols for studies in metabolic engineering. In: Doran PM (ed) Hairy Roots: Culture and Applications. Harwood, Amsterdam, pp 1–29

    Google Scholar 

  • Hamill JD, Parr AJ, Robins RJ, Rhodes MJC (1986) Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep 5:111–114

    Article  CAS  Google Scholar 

  • Han B, Linden JC, Gujarathi NP, Wickramasinghe SR (2004) Population balance approach to modelling hairy root growth. Biotechnol Prog 20:872–879

    Article  PubMed  CAS  Google Scholar 

  • Hansen G, Chilton MD (1996) “Agrolistic” transformation of plant cells: Integration of T-strands generated in planta. Proc Natl Acad SCI USA 94:7469–7474

    Google Scholar 

  • Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nature Biotech 22:1415–1422

    Article  CAS  Google Scholar 

  • Hess D (1992) Biotechnologie der Pflanzen. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Hibino K, Ushiyama K (1999) Commercial production of ginseng by plant tissue culture technology. In: Fu TJ, Curtis WR (eds) Plant Cell and Tissue Culture for the Production of Food Ingredients. Kluwer, New York, pp 215–224

    Google Scholar 

  • Hilton MG, Wilson PDG (1995) Growth and uptake of sucrose and mineral ions by transformed root cultures of Datura stramonium, Datura Candida x aurea, Datura wrightii, Hyoscyamus muticus and Atropa belladonna. Planta Med 61:345–350

    Article  PubMed  CAS  Google Scholar 

  • Hilton MG, Rhodes MJC (1990) Growth and hyoscyamine production of hairy root cultures of Datura stramonium in a modified stirred tank reactor. Appl Microbiol Biotechnol 33:132–138

    Article  PubMed  CAS  Google Scholar 

  • Hjortso MA (1997) Mathematical modelling of hairy root growth. In: Doran PM (ed) Hairy Roots: Culture and Applications. Harwood, Amsterdam, pp 169–178

    Google Scholar 

  • Hofer R (1996) Root hairs. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant Roots: The Hidden Half. Marcel Dekker, New York, pp 111–126

    Google Scholar 

  • Huang SY, Hung CH, Chou SN (2004) Innovative strategies for operation of mist trickling reactors for enhanced hairy root proliferation and secondary metabolite productivity. Enzyme Microb Technol 35:22–32

    Article  CAS  Google Scholar 

  • Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121–127

    Article  CAS  Google Scholar 

  • Hülsing B (2005) Biopharmazeutika aus transgenen Pflanzen. BioWorld 3:10–12

    Google Scholar 

  • James E, Lee JM (2001) The production of foreign proteins from genetically modified plant cells. In: Tscheper T (ed) Advances in biochemical engineering: Plant cells. vol 72. Springer, Berlin Heidelberg, pp 127–156

    Google Scholar 

  • Joliceur M, Chavarie C, Carreau PJ, Archambault J (1992) Development of a helical-ribbon impeller bioreactor for high-density plant cell suspension culture. Biotechnol Bioeng 39:511–521

    Article  Google Scholar 

  • Kartha KK (1987) Advances in the cryopreservation technology of plant cells and organs. In: Green CE, Somers DA, Hackett WP, Biesboer DD (eds) Plant Tissue and Cell Culture. Plant Biology 3. Liss, New York, pp 447–458

    Google Scholar 

  • Kawase Y, Moo-Young M (1990) The effect of antifoam agents on mass transfer in bioreactors. BioProcess Eng 5:169–173

    Article  CAS  Google Scholar 

  • Kieran PM, MacLoughlin PF, Malone DM (1997) Plant cell suspension cultures: Some engineering considerations. J Biotechnol 59:39–52

    Article  PubMed  CAS  Google Scholar 

  • Kieran PM, Malone DM, MacLoughlin PF (2000) Effects of hydrodynamic and interfacial forces on plant cell suspension systems. In: Tscheper T, Schügerl K, Kretzmer G (eds) Advances in Biochemical Engineering Biotechnology: Influence of Stress on Cell Growth and Product Formation, vol 67. Springer, Berlin Heidelberg New York, pp 139–177

    Chapter  Google Scholar 

  • Kim DI, Cho GH, Pedersen H, Chin CK (1991) A hybrid reactor for high density cultivation of plant cells. Appl Microbiol Biotechnol 34:726–729

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Hopper E, Hjortso MA (1995) Hairy root growth models: Effect of different branching patterns. Biotechnol Prog 11:178–186

    Article  CAS  Google Scholar 

  • Kim Y, Wyslouzil BE, Weathers PJ (2002a) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10

    CAS  Google Scholar 

  • Kim Y, Wyslouzil BE, Weather PJ (2002b) Growth of Artemisia annua hairy roots in liquid- and gas-phase reactors. Biotechnol Bioeng 80:454–464

    Article  PubMed  CAS  Google Scholar 

  • Kino-Oka M, Hitaka Y, Taya M, Tone S (1999) High-density culture of red beet hairy roots by considering medium flow conditions in a bioreactor. Chem Eng Sci 54:3179–3186

    Article  CAS  Google Scholar 

  • Kobayashi T, Niino T, Kobayashi M (2006) Cryopreservation of tobacco BY-2 suspension cell cultures by vitrification with encapsulation. Plant Biotech 23:333–337

    CAS  Google Scholar 

  • Komari T, Ishida Y, Hiei Y (2004) Plant transformation technology: Agrobacterium-mediated transformation. In: Christou P, Klee H (eds) Handbook of Plant Biotechnology, vol 1. Wiley, Chichester, pp 233–261

    Google Scholar 

  • Kreis W, Baron D, Stoll G (2001) Biotechnologie der Arzneistoffe. Deutscher Apotheker Verlag, Stuttgart

    Google Scholar 

  • Krüger A (2006) Untersuchungen zur in vitro Kultivierung von Zell- und Gewebekulturen des Malus domestica. Diploma Thesis, University of Applied Sciences Köthen/Anhalt

    Google Scholar 

  • Kwok KH, Doran PM (1995) Kinetic and stoiehiometric analysis of hairy roots in a segmented bubble column reactor. Biotechnol Prog 11:429–435

    Article  CAS  Google Scholar 

  • Lee KT, Suzuki T, Yamakawa T, Kodama T, Igarashi Y, Shimomura K (1999) Production of tropane alkaloids by transformed root cultures of Atropa belladonna in stirred bioreactors with stainless steel net. Plant Cell Rep 18:567–571

    Article  CAS  Google Scholar 

  • Lin LD, Wu JY, Ho KP, Qi SY (2001) Ultrasonic-induced physiological effects and secondary metabolite (saponin) production in Panax ginseng cell cultures. Ultrasound Med Biol 27:1147–1152

    Article  PubMed  CAS  Google Scholar 

  • Lin LD, Wu JY (2002) Enhancement of shikonin production in single- and two-phase suspension cultures of Lithospermum erythrorhizon cells using low-energy ultrasound. Biotechnol Bioeng 78:81–88

    Article  PubMed  CAS  Google Scholar 

  • Ma JKC, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    Article  PubMed  CAS  Google Scholar 

  • Madhusudhan R Ramachandra Rao S, Ravishankar GA (1995) Osmolarity as a measure of growth of plant cells in suspension cultures. Enzyme Microb Technol 17:989–991

    Article  CAS  Google Scholar 

  • Mantell SH, Smith H (1983) Plant Biotechnology. Cambridge University Press, Cambridge

    Google Scholar 

  • Marshall B (2006) Molecular Farming.com. http://www.molecularfarming.com/PMPs-and-PMIPs. html. Cited 10 Apr 2007

  • Menges M, Murray JAH (2004) Cryopreservation of transformed and wild-type Arabidopsis and tobacco cell suspension cultures. Plant J 37:635–644

    Article  PubMed  CAS  Google Scholar 

  • Mirjalili N, Linden JC (1995) Gas phase composition effects on suspension cultures of Taxus cuspidata. Biotechnol Bioeng 48:123–132

    Article  PubMed  CAS  Google Scholar 

  • Misawa M (1994) Plant tissue culture: An alternative for production of useful metabolites. FAO Agricultural Services Bulletin N 108. Food and Agriculture Organization of the United Nations, Rome, p 95

    Google Scholar 

  • Moldenhauer JR (2003) Cell culture preservation and storage for industrial bioprocesses. In: Vinci VA, Parekh SR (eds) Handbook of Industrial Cell Culture: Mammalian, Microbial and Plant Cells. Humana Press, Totowa, New Jersey, pp 498–501

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Murashige T (1973) Nutrition of plant cells and organs in vitro. In Vitro 9:81–85

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Naill MC and Roberts SC (2005) Cell cycle analysis of Taxus suspension cultures at the single cell level as an indicator of culture heterogeneity. Biotechnol Bioeng 90:491–500

    Article  PubMed  CAS  Google Scholar 

  • Nettleship L, Slaytor M (1974) Adaption of Peganum harmala callus to alkaloid production. J Exp Bot 25:1114–1123

    Article  CAS  Google Scholar 

  • Nuutila AM, Toivonen L, Kauppinen V (1994) Bioreactor studies on hairy root cultures of Catharanthus roseus: Comparison of three bioreactor types. Biotechnol Techniques 8:61–66

    Article  CAS  Google Scholar 

  • Nuutila AM, Linquist AS, Kauppinen V (1997) Growth of hairy root cultures of strawberry (Fragaria ¥ ananassa Duch.) in three different types of bioreactors. Biotechnol Techniques 6:363–366

    Article  Google Scholar 

  • Oksman-Caldentey KM, Sevón KM, Vanhala L, Hiltunen R (1994) Effect of nitrogen and sucrose on the primary and secondary metabolism of transformed root cultures of Hyoscyamus muticus. Plant Cell Tissue Org Cult 38:263–272

    Article  CAS  Google Scholar 

  • Oksman-Caldentey KM, Hiltunen R (1996) Transgenic crops for improved pharmaceutical products. Field Crops Res 45:57–69

    Article  Google Scholar 

  • Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tiss Org Cult 81:287–300

    Article  Google Scholar 

  • Palazón J, Mallol A, Eibl R, Lettenbauer C, Cusidó RM, Piñol MT (2003) Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med 69:344–349

    Article  PubMed  Google Scholar 

  • Pan ZW, Wang HQ, Zhong JJ (2000) Scale-up study on suspension cultures of Taxus chinensis cells for production of taxane diterpene. Enzyme Microb Tech 27:714–723

    Article  CAS  Google Scholar 

  • Parnham MJ, Kesselring K (1985) Rosmarinic acid. Drugs Future 10:756–757

    Google Scholar 

  • Petersen M, Dombrowski K, Gertlowski C, Haeusler E, Kawatzki B, Meinhard J, Alfermann AW (1992) The use of plant cell cultures to study natural product biosynthesis. In: Oono K, Hirabayashi T, Kikuchi S, Handa H, Kajiwara K (eds) Plant Tissue Culture and Gene Manipulation for Breeding and Formation of Phytochemicals. NAIR, Tsukuba, pp 293–296

    Google Scholar 

  • Präve P, Faust U, Sittig W, Sukatsch DA (1994) Handbuch der Biotechnologie. Oldenbourg Verlag, München, p 189

    Google Scholar 

  • Qian ZG, Zhao ZJ, Xu Y, Qian X, Zhong JJ (2005) Highly efficient strategy for enhancing taxoid production by repeated elicitation with a newly synthesized jasmonate in fed-batch cultivation of Taxus chinensis cells. Biotechnol Bioeng 90:516–521

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan D, Curtis WR (1994) Fluid dynamic studies on plant root cultures for application to bioreactor design. In: Ryu DD, Furusaki S (eds) Studies in Plant Science, 4. Advances in Plant Biotechnology: Production of Secondary Metabolites. Elsevier, Amsterdam, pp 281–305

    Google Scholar 

  • Rasmussen JL, Kikkert JR, Roy MK, Sanford JC (1994) Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles. Plant Cell Rep 13:212–217

    Article  CAS  Google Scholar 

  • Raval KN, Hellwig S, Prakash G, Ramos-Plascencia A, Srivastava A, Büchs J (2003) Necessity of two-stage process for the production of Azadirachtin-related limonoids in suspension cultures of Azadirachata indica. J Biosc Bioeng 96:16–22

    CAS  Google Scholar 

  • Reinert J, Yeoman MM (1982) Plant Cell and Tissue Culture: A Laboratory Manual. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Reuben JP, Croteau RB (2004) Metabolic Engineering of plant secondary metabolism. In: Christou P, Klee H (eds) Handbook of Plant Biotechnology, vol 1. Wiley, New York, pp 609–627

    Google Scholar 

  • Rhijwani SK, Shanks JV (1998) Effect of elicitor dosage and exposure time on biosynthesis of indole alkaloids by Catharanthus roseus hairy root cultures. Biotechnol Prog 14:442–449

    Article  Google Scholar 

  • Rhodes MJC, Parr AJ, Giulietti A, Aird ELH (1994) Influence of exogeneous hormones on the growth and secondary metabolite formation in transformed root cultures. Plant Cell Tissue Organ Cult 38:143–151

    Article  CAS  Google Scholar 

  • Roberts SG, Shuler ML (1997) Large-scale plant cell culture. Curr Opin Biotech 8:154–159

    Article  PubMed  CAS  Google Scholar 

  • Ryu DDY, Lee SO (1990) Determination of growth rate for plant cell cultures: Comparative studies. Biotechnol Bioeng 35:305–311

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Mizukami H (2002) Plant cell cultures as producers of secondary metabolites. In: Oksman-Caldentey KM, Barz WH (eds) Plant Biotechnology and Transgenic Plants. Marcel Dekker, New York, pp 77–109

    Google Scholar 

  • Schiermeyer A, Dorfmüller S, Schinkel H (2004) Production of pharmaceutical proteins in plants and plant cell suspension cultures. In: Fischer R, Schillberg S (eds) Molecular Farming. Wiley-VCH, Weinheim, pp 91–112

    Chapter  Google Scholar 

  • Schillberg S, Twyman RM (2004) Emerging production systems for antibodies in plants. In: Christou P, Klee H (eds) Handbook of Plant Biotechnology, vol 2. Wiley, Chichester, pp 801–810

    Google Scholar 

  • Schillberg S, Twyman RM, Fischer R (2005) Biopharmaceutical production in cultured plant cells. In: Knäblein J (ed) Modern biopharmaceuticals, vol 3. Wiley VCH, Weinheim, pp 949–965

    Chapter  Google Scholar 

  • Schumacher HM, Malik KA, van Iren F (1994) Simple storage of plant cell cultures in liquid media. Publication No. 13, UNESCO/WFCC Technical Information Sheet: 1–4

    Google Scholar 

  • Seki M, Furusaki S (1999) Medium recycling as an operational strategy to increase plant secondary metabolite formation. In: Fu TJ, Curtis WR (eds) Plant cell and tissue culture for the production of food ingredients. Kluwer, New York, pp 157–163

    Google Scholar 

  • Seitz U (1987) Cryopreservation of plant cell cultures. Planta Med 53:311–314

    Article  PubMed  CAS  Google Scholar 

  • Sevón N (1997) Tropan alkaloids in hairy roots and regenerated plants of Hyoscyamus muticus. PhD Thesis, University of Helsinki

    Google Scholar 

  • Sevón N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes-mediated transformation: Root cultures as a source of alkaloids. Planta Med 68:859–868

    Article  PubMed  Google Scholar 

  • Shadwick FS, Doran PM (2004) Foreign protein expression using plant cell suspension and hairy root cultures. In: Fischer R, Schillberg S (eds) Molecular Farming. Wiley-VCH, Weinheim, pp 13–36

    Chapter  Google Scholar 

  • Sharp JM, Doran PM (2001) Strategies for enhancing monoclonal antibody accumulation in plant cell and organ cultures. Biotechnol Prog 17:979–992

    Article  PubMed  CAS  Google Scholar 

  • Shiao TL, Doran PM (2000) Root hairiness: Effect on fluid flow and oxygen transfer in hairy root cultures. J Biotechnol 83:199–210

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki N, Hirose K, Yonemoto T, Takadi T (1992) Suspension culture of Nicotiana tabacum cells in a rotary-drum bioreactor. J Chem Technol Biotechnol 53:359–363

    Article  CAS  Google Scholar 

  • Sijmons PC, Dekker BMM, Schrammeijer B, Verwoerd TC, van den Elzen PJM, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Bio/Technology 8:217–221.

    Article  PubMed  CAS  Google Scholar 

  • Singh G, Curtis WR (1994) Reactor design for plant root culture. In: Shargool PD, Ngo TT (eds) Biotechnological Applications Plant Cultures. CRC Press. Boca Raton, FL, pp 185–206

    Google Scholar 

  • Singh G (1997) Elicitation-manipulating and enhancing secondary metabolite production. In: Fu TJ, Curtis WR (eds) Plant cell and tissue culture for the production of food ingredients. Kluwer, New York, pp 101–127

    Google Scholar 

  • Steward N, Martin R, Engasser JM, Goergen JL (1999) Determination of growth and lysis kinetics in plant cell suspension cultures from the measurement of esterase release. Biotechnol Bioeng 66:114–121

    Article  PubMed  CAS  Google Scholar 

  • Storhas W (1994) Bioreaktoren und periphere Einrichtungen. Vieweg, Braunschweig/Wiesbaden

    Google Scholar 

  • Su WW (2006) Bioreactor engineering for recombinant protein production using plant cell suspension culture. In: Dutta Gupta S, Ibaraki Y (eds) Plant Tissue Culture Engineering, Series: Focus on Biotechnology, vol 6. Springer, Dordrecht, pp 135–159

    Google Scholar 

  • Su WW (1995) In situ filtration of Anchusa officinalis culture in a cell-retention stirred tank bioreactor. Biotechnol Techniques 9:259–264

    Article  CAS  Google Scholar 

  • Takahashis S, Fujita Y (1991) Production of shikonin. In: Komamine A, Misawa M, DiCosmo F (eds) Plant Cell Culture in Japan. CMC, Tokyo, pp 72–78

    Google Scholar 

  • Takayama S, Akita M (2006) Bioengineering aspects of bioreactor application in plant propagation. In: Dutta Gupta S, Ibaraki Y (eds) Plant Tissue Culture Engineering, Series: Focus on Biotechnology, vol 6. Springer, Dordrecht, pp 83–100

    Google Scholar 

  • Takebe J, Labib G, Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwiss 5:318–320

    Article  Google Scholar 

  • Tanaka H, Uemura M, Kaneko Y, Aoyagi H (1993) Estimation of cell biomass in plant cell suspensions by the osmotic pressure measurement of culture broth. J Ferment Bioeng 76:501–504

    Article  CAS  Google Scholar 

  • Tanaka H (2000) Technological problems in cultivation of plant cells at high density. Biotechnol Bioeng 67:1203–1217

    Article  Google Scholar 

  • Tanaka H, Nishijima F, Suwa M, Iwamoto T (1983) Rotating drum fermentor for plant cell suspension cultures. Biotechnol Bioeng 25:2359–2370

    Article  PubMed  CAS  Google Scholar 

  • Taticek RA, Lee CWT, Shuler ML (1994) Large-scale insect and plant cell culture. Curr Opin Biotechnol 5:165–174

    Article  PubMed  CAS  Google Scholar 

  • Taya M, Hegglin M, Prenosil JE, Bourne JR (1989a) On-line monitoring of cell growth in plant tissue cultures by conductometry. Enzyme Microb Technol 11:170–176

    Article  CAS  Google Scholar 

  • Taya M, Yoyoma A, Kondo O, Kobayashi T, Matsui C (1989b) Growth characteristics of plant hairy roots and their cultures in bioreactors. J Chem Eng Jpn 22:84–89

    Article  Google Scholar 

  • Taya M, Kino-Oka M, Tone S (1989c) A kinetic model of branching growth of plant hairy root. J Chem Eng Jpn 22:698–670

    Article  Google Scholar 

  • Terrier B, Courtois D, Hénault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, Pétiard V (2006) Two new disposable bioreactors for plant cell culture: The wave & undertow bioreactor and the slug bubble bioreactor. Biotechnol Bioeng, Early View: 1–25

    Google Scholar 

  • Than NT, Murthy HN, Yu KW, Jeong CS, Hahn EJ, Paek KY (2004) Effect of inoculum size on biomass accumulation and ginsenoside production by large-scale cell suspension cultures of Panax ginseng. J Plant Biotechnol 6:265–268

    Google Scholar 

  • Towler MJ, Kim Y, Wyslouzil BE, Correll MJ, Weathers PJ (2006) Design, development and applications of mist bioreactors for micropropagation and hairy root culture. In: Dutta Gupta S, Ibaraki Y (eds) Plant Tissue Culture Engineering, Series: Focus on Biotechnology, vol 6. Springer, Dordrecht, pp 119–134

    Google Scholar 

  • Twyman RM, Christou P (2004) Plant transformation technology: Particle bombardment. In: Christou P, Klee H (eds) Handbook of Plant Biotechnology, vol 1. Wiley, Chichester, pp 263–289

    Google Scholar 

  • Val J (1993) Modelling the physiology of plant cells in suspension culture. PhD Thesis, Leiden University

    Google Scholar 

  • Valluri JV, Treat WJ, Soltes E (1991) Bioreactor culture of heterotrophic sandalwood (Santalum album L.) cell suspensions utilizing a cell-lift impeller. Plant Cell Rep 10:366–370

    Article  CAS  Google Scholar 

  • Vanisree M, Lee CY, Lo SF, Nalawade SM, Lin CY, Tsay HS (2004) Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot Bull Acad Sin 45:1–22

    CAS  Google Scholar 

  • Vervliet G, Holsters M, Teuchy H, van Montagu M, Schell J (1975) Characterization of different plaqueforming and defective temperature phages in Agrobacterium strains. J Gen Virol 26:33–48

    Article  PubMed  CAS  Google Scholar 

  • Voedisch B, Menzel C, Jordan E, El-Ghezal A, Schirrmann T, Hust M, Jostock T (2005) Heterologe Expression von rekombinanten Proteinpharmazeutika. Laborwelt 6:26–31

    Google Scholar 

  • Wang HQ, Yu JT, Zhong JJ (2000) Significant improvement of taxane production in suspension cultures of Taxus chinensis by sucrose feeding strategy. Process Biochem 35:479–483

    Article  CAS  Google Scholar 

  • Wang SJ, Zhong JJ (1996a) A novel centrifugal impeller bioreactor I. Fluid circulation, mixing, and liquid velocity profiles. Biotechnol Bioeng 51:511–519

    Article  PubMed  CAS  Google Scholar 

  • Wang SJ, Zhong JJ (1996b) A novel centrifugal impeller bioreactor II. Oxygen transfer and power consumption. Biotechnol Bioeng 51:511–519

    Article  PubMed  CAS  Google Scholar 

  • Weathers PJ, Zobel RD (1992) Aeroponics for the culture of organisms, tissues and cells. Biotechnol Adv 10:93–115

    Article  PubMed  CAS  Google Scholar 

  • Weathers PJ, Wyslouzil BE, Whipple M (1997) Laboratory-scale studies of nutrient mist reactors for culturing hairy roots. In: Doran PM (ed) Hairy Roots: Culture and Applications. Harwood Academic, Amsterdam, pp 191–199

    Google Scholar 

  • Weathers PJ, Wyslouzil BE, Wobbe KK, Kim YJ, Yigit E (1999) The biological response of hair roots to O2 levels in bioreactors. In Vitro Cell Dev Biol Plant 35:286–289

    Article  CAS  Google Scholar 

  • Whitney P (1992) Novel bioreactors for the growth of roots transformed by Agrobacterium rhizogenes. Enzyme Microb Technol 14:13–17

    Article  CAS  Google Scholar 

  • Widholm J (1972) The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol 47:189–194

    PubMed  CAS  Google Scholar 

  • Wilhelmson A, Häkkinen ST, Kallio PT, Oksman-Caldentey KM, Nuutila AM (2006) Heterologous expression of Vitreoscilla haemoglobin (VHb) and cultivation conditions affect the alkaloid profile of Hyoscyamus muticus hairy roots. Biotech Prog 22:350–358

    Article  CAS  Google Scholar 

  • Williams GRC, Doran PM (1999) Investigations of liquid-solid hydrodynamic boundary layers and oxygen requirements of hairy root cultures. Biotechnol Bioeng 64:729–740

    Article  PubMed  CAS  Google Scholar 

  • Wilson PDG (1997) The pilot-scale cultivation of transformed roots. In: Doran PM (ed) Hairy Roots: Culture and Applications. Harwood Academic, Amsterdam, pp 179–190

    Google Scholar 

  • Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhoevel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A, Wildi E, Ripplinger P (2005) Sustainable production of phytochemicals by plant in vitro cultures: anticancer agents. Plant Gene Res 3:90–100

    Article  CAS  Google Scholar 

  • Withers LA (1991) Maintenance of plant tissue cultures. In: Kirsop BE, Doyle A (eds) Maintenance of Microorganisms, 2nd ed. Academic Press, London, pp 243–267

    Google Scholar 

  • Wu J, Ge X (2004) Oxidative burst, jasmonic acid biosynthesis, and taxol production induced by low-energy ultrasound in Taxus chinensis cell suspension cultures. Biotechnol Bioeng 85:714–721

    Article  PubMed  CAS  Google Scholar 

  • Wurm F (2005) Manufacture of recombinant biopharmaceutical proteins by cultivated mammalian cells in bioreactors. In: Knäblein J (ed) Modern Biopharmaceuticals, vol 3. Wiley VCH, Weinheim, pp 723–759

    Chapter  Google Scholar 

  • Xing HH, Ono A, Miyanaga K, Tanji Y, Unno H (2001) A kinetic model for growth of callus derived from Eucommia ulmoides aiming at mass production of a factor enhancing collagen synthesis of animal cells. Math Comput Simulat 56:463–474

    Article  Google Scholar 

  • Yanpaisan W, King N, Doran P (1998) Analysis of cell cycle activity and population dynamics in heterogeneous plant cell suspensions using flow cytometry. Biotechnol Bioeng 58:515–528.

    Article  PubMed  CAS  Google Scholar 

  • Yanpaisan W, King N, Doran P (1999) Flow cytometry of plant cells with applications in large-scale bioprocessing. Biotechnol Adv 17:3–27

    Article  PubMed  CAS  Google Scholar 

  • Yazaki K (2004) Natural products and metabolites. In: Christou P, Klee H (eds) Handbook of Plant Biotechnology, vol 2. Wiley, Chichester, pp 811–857

    Google Scholar 

  • Ye H, Huang LL, Chen SD, Zhong JJ (2004) Pulsed electric field stimulates plant secondary metabolism in suspension cultures of Taxus chinensis. Biotechnol Bioeng 88:788–795

    Article  PubMed  CAS  Google Scholar 

  • Yeoman MM, Yeoman CL (1996) Manipulating secondary metabolism in cultured plant cells. New Phytol 134:553–569

    Article  CAS  Google Scholar 

  • Yoshikawa T (1997) Production of ginsenosides in ginseng hairy root cultures. In: Doran PM (ed) Hairy Roots: Culture and Applications. Harwood Academic, Amsterdam, pp 73–79

    Google Scholar 

  • Yoshimatsu K, Yamaguchi H, Shimomura K (1996) Traits of Panax ginseng hairy roots after cold storage and cryopreservation. Plant Cell Rep 15:555–560

    Article  CAS  Google Scholar 

  • Yu S, Mahagamasekera MGP, Willimas GRC, Kanokwaree K, Doran PM (1997) Oxygen effects in hairy root culture. In: Doran PM (ed) Hairy Roots: Culture and Applications. Harwood Academic, Amsterdam, pp 139–150

    Google Scholar 

  • Zenk MH, El-Shagi H, Schulte U (1975) Anthraquinone production by cell suspension cultures of Morinda citrifolia. Planta Med Suppl 79–101

    Google Scholar 

  • Zenk MH, El-Shagi H, Arenes H, Stockgit J, Weiler EW, Dues D (1977) Formation of indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus. In: Barz W, Reinhard E, Zenk MH (eds) Plant Tissue Culture and its Biological Application. Springer, Berlin Heidelberg New York, pp 27–44

    Google Scholar 

  • Zhang W, Curtin C, Kikuchi M, Franco C (2002) Integration of jasmonic acid and light irradiation for enhancement of anthocyanin biosynthesis in Vitis vinifera suspension cultures. Plant Sci 162:459–468

    Article  Google Scholar 

  • Zhong JJ (2001) Biochemical engineering of the production of plant-specific secondary metabolites. In: Tscheper T (ed) Advances in Biochemical Engineering: Plant Cells, vol 72. Springer, Berlin Heidelberg New York, pp 1–26

    Google Scholar 

  • Zhong JJ, Yoshida M, Fujiyama K, Seki T, Yoshida T (1993) Enhancement of anthocyanin production by Perilla frutescens cells in a stirred bioreactor with internal light irradiation. J Ferment Bioeng 75:299–303

    Article  CAS  Google Scholar 

  • Zhong JJ, Chen F, Hu WW (1999) High density cultivation of Panax notoginseng cells in stirred bioreactors for the production of ginseng biomass and ginseng saponin. Process Biochem 35:491–496

    Article  Google Scholar 

  • Ziv M (2000) Bioreactor technology for plant micropropagation. In: Janick J (ed) Horticultural Reviews, vol 24. Wiley, New York, pp 1–30

    Google Scholar 

Complementary Reading

  • Christou P, Klee H (2004) Handbook of Plant Biotechnology, vol 1–2. Wiley, Chichester

    Book  Google Scholar 

  • Endress R (1994) Plant Cell Biotechnology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Evans D, Coleman J, Kearns A (2003) Plant Cell Culture. BIOS Scientific, Abingdon

    Google Scholar 

  • Doran PM (1997) Hairy Roots: Culture and Applications. Harwood, Amsterdam

    Google Scholar 

  • Dutta Gupta S, Ibaraki Y (2006) Plant Tissue Culture Engineering, Series: Focus on Biotechnology, vol 6. Springer, Dordrecht

    Google Scholar 

  • Fischer R, Schillberg S (2004) Molecular Farming: Plant-made Pharmaceuticals and Technical Proteins. Wiley, Weinheim

    Google Scholar 

  • Hess D (1992) Biotechnologie der Pflanzen. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Hvoslef-Eide AK, Preil W (2005) Liquid Culture Systems for In Vitro Plant Propagation. Springer, New York

    Book  Google Scholar 

  • IAEA (2004) Low cost options for tissue culture technology in developing countries. Proceedings of a Technical Meeting Organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, 26–30 August 2002

    Google Scholar 

  • Oksman-Caldentey KM, Barz WH (2002) Plant Biotechnology and Transgenic Plants. Marcel Dekker, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eibl, R., Eibl, D. (2009). Plant Cell-Based Bioprocessing. In: Cell and Tissue Reaction Engineering. Principles and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68182-3_8

Download citation

Publish with us

Policies and ethics