Skip to main content

Central and Southern Andean Tectonic Evolution Inferred from Arc Magmatism

  • Chapter
The Andes

Abstract

Patterns of spatial distribution, and geochemical and isotopic evolution from subduction-related igneous rocks provide tools for scaling, balancing and predicting orogenic processes and mechanisms. We discuss patterns from two Andean key arc segments, which developed into fundamentally different types of orogens: (1) A plateau-type orogen with thick crust in the central Andes, and (2) a non-plateau orogen with normal crust in the southern Andes.

Northern Chile (21–26° S) shows a collage of stepwise, eastwardmigrating arc axes from 200 Ma to the Present. Each arc is characterized by a repeating sequence of magmatic-tectonic events: Magmatism for 30–40 million years with increasing REE fractionation (increasing La/Yb, La/Sm and Sm/Yb ratios); increasing crust-like initial Sr and Nd isotopes; early-stage, back-arc, alkaline magmatism; and late-stage tectonic activity and (mainly) crustal shortening followed by intra-arc strike-slip fault motion, followed by mineralization and magmatic quiescence for 5–12 million years, before the next main-arc evolved up to 100 km further east. Increasing REE fractionation and crust-like Sr and Nd isotopes correlate with crustal thickening by tectonic shortening and magmatic underplating, from 30–35 km (Jurassic) to 45 km (Eocene) to 70 km thick in the modern central Andes. Episodes of magmatic quiescence for 5–12 million years reflect episodes of flat subduction; the repeated nature of these episodes reflects dynamic subduction cycles including flat subduction, slab steepening, and slab breakoff.

Southern Chile (41–46° S) shows stationary arc magmatism from 200 to 50 Ma; followed by trench retreat and arc widening from 50–28 Ma; arc narrowing from 28–8 Ma; and magmatic quiescence from 8–3 Ma. Volcanism from the Pliocene to the Present was concentrated in a narrow volcanic arc. Moderate crustal shortening occurred from 70–55 Ma (mainly back-arc) and ∼9–8 Ma (intra-arc). REE fractionation patterns (low and constant La/Yb ratios) are similar to those of Jurassic rocks from northern Chile, consistent with crustal thicknesses of 30-35 km. Initial Sr and Nd isotopes between 200 and 20 Ma evolved from crust-like to mantle-like ratios, with a reversal at 20 Ma to more diffuse and crust-like ratios. This pattern can be related to successive isotopic shielding and/or asthenospheric depletion (200-20 Ma), and increasing crustal assimilation (20 Ma to Recent) due to moderate crustal thickening. Similarly to northern Chile, magmatic quiescence from 8-3 Ma may reflect an episode of flat subduction.

The cyclicity of magmatic, isotopic, and tectonic features in northern Chile suggests that rheologic weakening of the lithosphere plays an important role. Shared magmatic-tectonic features of paleo-arcs in northern Chile and regions of subhorizontal in southern Chile suggests that flat slab episodes may be a typical feature of Andean-type margins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allmendinger RW (1986) Tectonic development, southeastern border of the Puna Plateau, northwestern Argentine Andes. Geol Soc Am Bull 97:1070–1082

    Article  Google Scholar 

  • Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna plateau of the Central Andes. Ann Rev Earth Planet Sci 25:139–174

    Article  Google Scholar 

  • Andriessen PA, Reutter K-J (1994) K-Ar and fission-track mineral age determination of igneous rocks related to multiple magmatic arc systems along the 23°S lat. of Chile and NW Argentina. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer-Verlag, Berlin Heidelberg New York, pp 141–153

    Google Scholar 

  • Arancibia G (2004) Mid-Cretaceous crustal shortening: evidence from a regional-scale ductile shear zone in the Coastal range of central Chile (32°S). J South Am Earth Sci 17:209–226

    Article  Google Scholar 

  • Barazangi M, Isacks B (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4:686–692

    Article  Google Scholar 

  • Barnes HL (1997) Geochemistry of hydrothermal ore deposits. John Wiley & Sons, NewYork, p 972

    Google Scholar 

  • Barth MG, Foley SF, Horn I (2002) Partial melting in Archean subduction zones: constraints from experimentally determined trace elements partition coefficients between eclogitic materials and tonalitic melts under upper mantle conditions. Precambrian Res 113:323–340

    Article  Google Scholar 

  • Bartsch V (2004) Magmengenese der obertriassischen bis unterkretazischen Vulkanite der mesozoischen Vulkanite in der Küstenkordillere von N-Chile zwischen 24° und 27°S: Petrographie, Mineralchemie, Geochemie und Isotopie. PhD thesis, Technische Universität Berlin

    Google Scholar 

  • Bird P (1979) Continental delamination and the Colorado Plateau. J Geophys Res 84(B13):7561–7571

    Google Scholar 

  • Boric R, Diaz F, Maksaev V (1990) Geologia y yacimientos metaliferos de la Region de Antofagasta, Serv Nac Geol Miner Boletin 40

    Google Scholar 

  • Boyd TM, Snoke JA, Sacks IS, Rodriguez AB (1984) High resolution determination of the Benioff zone geometry beneath southern Peru, Bull Seismol Soc Am 74:559–568

    Google Scholar 

  • Bruce RM, Nelson EP, Weaver SG, Lux DR (1991) Temporal spatial variation in the southern Patagonian batholith: constraints on magmatic arc development. In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. Geol Soc Am Spec P 265:1–12

    Google Scholar 

  • Cahill TA, Isacks BL (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97:17503–17529

    Google Scholar 

  • Cande SC, Leslie RB, Parra JC, Hobart M (1986) Interaction between the Chile ridge and Chile trench; Geophysical and geothermal evidence. J Geophys Res B92:495–520

    Google Scholar 

  • Charrier R, Reutter K-J (1994) The Purilactis Group of northern Chile: boundary between arc and backarc from late Cretaceous to Eocene. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer-Verlag, Berlin Heidelberg New York, pp 189–202

    Google Scholar 

  • Cloos M (1993) Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol Soc Am Bull 105:715–737

    Article  Google Scholar 

  • Davidson JP, Harmon RS, Wörner G (1991) The source of central Andean magmas: some considerations. In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. Geol Soc Am Spec P 265:233–243

    Google Scholar 

  • Döbel R, Hammerschmidt K, Friedrichsen H (1992) Implication of 40Ar/39Ar dating of Early Tertiary volcanic rocks from the north-Chilean Precordillera. Tectonophysics 202:55–81

    Article  Google Scholar 

  • England P, Engdahl R, Thatcher W (2004) Systematic variation in the depths of slabs beneath arc volcanoes. Geophys J Int 156:377–408

    Article  Google Scholar 

  • Furlong K, Fountain Dm (1986) Continental crustal underplating: thermal considerations and seismic-petrological consideration. J Geophys Res 91:8285–8294

    Google Scholar 

  • Garfunkel Z, Anderson CA, Schubert G (1986) Mantle circulation and the lateral migration of subducted slabs. J Geophys Res 91(B7):7205–7223

    Google Scholar 

  • Grocott J, Brown M, Dallmeyer RD, Taylor GK, Treloar TJ (1994) Mechanisms of continental growth in extensional arcs: an example from the Andean plate-boundary zone, Geology 22:391–394

    Article  Google Scholar 

  • Günther A (2001) Strukturgeometrie, Kinematikanalyse und Deformationsgeschichte des oberkretazisch-alttertiären magmatischen Bogens (21.5–23°S), Berliner Geowiss Abh 213

    Google Scholar 

  • Gutscher MA, Spakman W, Bkjwaard H, Engdahl ER (2000) Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin. Tectonics 19:814–833

    Article  Google Scholar 

  • Haschke (2002) Evolutionary geochemical patterns of Late Cretaceous to Eocene arc magmatic rocks in North Chile: implications for Archean crustal growth. EGU Stephan Mueller Spec Pub Ser 2, pp 207–218

    Google Scholar 

  • Haschke M, Günther A (2003) Balancing crustal thickening in arc by tectonic vs. magmatic means. Geology 31(11):933–936

    Article  Google Scholar 

  • Haschke M, Siebel W, Günther A, Scheuber E (2002a) Repeated crustal thickening and recycling during the Andean orogeny in North Chile (21°–26°S). J Geophys Res 107(B1): 10.1029/2001JB000328

    Google Scholar 

  • Haschke M, Scheuber E, Günther A, Reutter K-J (2002b) Evolutionary cycles during the Andean orogeny: repeated slab breakoff and flat subduction? Terra Nova 14(1):49–56

    Article  Google Scholar 

  • Haschke M, Echtler H, Oncken O (2003) Fate of Basaltic Underplate in North and South Chile. Geol Soc Am Abs Prog 64815, 35(6)

    Google Scholar 

  • Hasegawa A, Sacks IS (1981) Subduction of the Nazca Plate beneath Peru as determined from seismic observations. J Geophys Res 86:4971–4980

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal Contributions to arc magmatism in the Andes of Central Chile, Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Horton BK (1998) Sediment accumulation on top of the Andean orogenic wedge: Oligocene to late Miocene basins of the Eastern Cordillera, southern Bolivia. Geol Soc Am Bull 110:1174–1192

    Article  Google Scholar 

  • Isacks BL (1988) Uplift of the Central Andean Plateau and bending of the Bolivian orocline. J Geophys Res 93:3211–3231

    Google Scholar 

  • Jaillard RD (1986) Relations among subduction parameters, Rev Geophys 24:217–284

    Google Scholar 

  • James DE, Sacks IS (1999) Cenozoic formation of the Central Andes: a geophysical perspective. In: Skinner BJ (ed) Geology and ore deposits of the Central Andes. Soc Econ Geol Spec Pub 7, pp 1–25

    Google Scholar 

  • Jordan TE, Reynolds JH, Erikson JP (1997) Variability in age of initial shortening and uplift in the central Andes, 16–33°30’S. In: Ruddiman W (ed) Tectonic uplift and climate change. Plenum, New York, pp 41–61

    Google Scholar 

  • Jordan TE, Burns WM, Veiga R, Pangaro F, Copeland P, Kelley S, Mpodozis C (2001) Extension and basin formation in the southern Andes caused by increased convergence rate: a mid-Cenozoic trigger for the Andes. Tectonics 20(3):308–324

    Article  Google Scholar 

  • Kay SM (2002) Tertiary to Recent transient shallow subduction zones in the Central and Southern Andes. XV Congreso Geologico Argentino, Calafata, Argentina, Abstract 237

    Google Scholar 

  • Kay SM, Abbruzzi JM (1996) Magmatic evidence for Neogene lithospheric evolution of the central Andean “flat-slab” between 30°S and 32°S. Tectonophysics 259:15–28

    Article  Google Scholar 

  • Kay RW, Kay SM (1991) Creation and destruction of lower continental crust. Geol Rundsch 80(2):259–278

    Article  Google Scholar 

  • Kay SM, Mancilla O (2001) Neogene shallow subduction segments in the Chilean/Argentine Andes and Andean-type margins. Geol Soc Am Abs Prog 33, A156

    Google Scholar 

  • Kay SM, Mpodozis C (2001) Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust, GSA Today 11(3):4–9

    Article  Google Scholar 

  • Kay SM, Maksaev V, Mpodozis C, Moscoso R, Nasi C (1987) Probing the evolving Andean lithosphere: Mid-late Tertiary magmatism in Chile (29°–30.5°S) over the zone of subhorizontal subduction. J Geophys Res 92:6173–6189

    Google Scholar 

  • Kay SM, Mpodozis C, Ramos VA, Munizaga F (1991) Magma source variations for Mid-Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the Central Andes (28°–33°S). In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. Geol Soc Amer Spec P 265:113–137

    Google Scholar 

  • Kay SM, Ardolino AA, Franchi M, Ramos VA (1993) El origen de la meseta de Somun Cura: distribucion y geoquimica de sus rocas volcanicas maficas, XII Congr. Geol. Argentino y II. Congr. Explor. Hidrocarburos, 4, pp 236–248

    Google Scholar 

  • Kay SM, Mpodozis C, Tittler A, Cornejo P (1994) Tertairy magmatic evolution of the Maricunga Mineral Belt in Chile. Int Geol Rev 36:1079–1112

    Google Scholar 

  • Kay SM, Mpodozis C, Coira B (1999) Neogene magmatism, tectonism, and mineral deposits of the central Andes (22° to 33°S latitude). In: Skinner BJ (ed) Geology and ore deposits of the Central Andes. Soc Econom Geol Spec Pub 7, pp 27–59

    Google Scholar 

  • Kincaid C, Griffiths RW (2004) Variability in flow and temperatures within mantle subduction zones. Geochem Geophys Geosyst 5(6): doi 10.1029/2003GC000666

    Google Scholar 

  • Kincaid C, Sacks S (1997) The thermal and dynamical evolution of the upper mantle in subduction zones. J Geophys Res 102:12295–12315

    Article  Google Scholar 

  • Kilian R, Behrmann JH (2003) Geochemical constraints on the sources of Southern Chile Trench sediments and their recycling in arc magmas of the Southern Andes. J Geol Soc London 160: doi 10.1144/0016-764901-143

    Google Scholar 

  • Klein M, Stosch HG, Seck HA (1997) Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: an experimental study. Chem Geol 138:257–271

    Article  Google Scholar 

  • Kley J, Müller J, Tawackoli S, Jacobshagen V, Manutsoglu E (1997) Pre-Andean and Andean-age deformation in the Eastern Cordillera of southern Bolivia. J S Am Earth Sci 10:1–19

    Article  Google Scholar 

  • Lahsen A (1982) Upper Cenozoic volcanism and tectonism in the Andes of northern Chile. Earth Sci Rev 18:258–302

    Article  Google Scholar 

  • Lara L, Rodriguez C, Moreno H, Arce C (2001) Geocronologia K-Ar y geoquimica del volcanismo piloceno superior-pleistoceno de los Andes del sur (39–42°S). Rev Geol Chile 28(1):67–90

    Google Scholar 

  • Lavenu A, Cembrano J (1999) Compressional-and transpressionalstress pattern for Pliocene and Quaternary brittle deformation in fore arc and intra-arc zones (Andes of Central and Southern Chile). J Struct Geol 21:1669–1691

    Article  Google Scholar 

  • Lopez-Escobar L, Vergara M (1997) Eocene-Miocene longitudinal depression and Quaternary volcanism in the southern Andes, Chile (33–42.5°S): a geochemical comparison. Rev Geol Chile 24(2):227–244

    Google Scholar 

  • Maksaev V (1988) Metallogenic implications of K-Ar, 40Ar-39Ar, and fission-track dates of mineralized areas in the Andes of northern Chile. V Congreso Geologíco Chileno, Actas 1:B65–B86

    Google Scholar 

  • McCaffrey R (1997) Influences of recurrence times and fault temperatures on the age-rate dependence of subduction zone seismicity. J Geophys Res 102:22839–2285

    Article  Google Scholar 

  • McGeary S, Nur A, Ben-Avraham Z (1985) Spatial gaps in arc volcanism: the effect of collision or subduction of oceanic plateaus. Tectonophysics 119:195–221

    Article  Google Scholar 

  • McKenzie D, Nimmo F, Jackson JA (2000) Characteristics and consequences of flow in the lower crust. J Geophys Res 105(B5):11029–11046

    Article  Google Scholar 

  • McMillan N, Davidson J, Wörner G, Harmon RS, Lopez-Escobar L, Moorbath S (1993) Mechanism of trace element enrichment related to crustal thickening: the Nevados de Payachata region, Northern Chile. Geology 21:467–470

    Article  Google Scholar 

  • Megard F (1987) Cordilleran Andes and marginal Andes: a review of Andean geology north of the Arica elbow (18°S). In: Monger JW, Francheteau J (eds) Circum-Pacific orogenic belts and evolution of the Pacific Ocean Basin. AGU Geodyn Ser 18, pp 71–95

    Google Scholar 

  • Melnick D, Rosenau M, Folguera A, Echtler H (2006) Neogene tectonic evolution of the Neuquén Andes western flank. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S lat). Geol Soc Am Spec P 407:73–95

    Google Scholar 

  • Mpodozis C, Cornejo P, Kay SM (1995) La franja de Maricunga: sintesis de la evolucion del frente volcanico Oligocene-Mioceno de la zona sur de los Andes centrales. Rev Geol Chile 22:273–314

    Google Scholar 

  • Munizaga F, Herve F, Drake R, Pankhurst RJ, Brook M, Snelling N (1988) Geochronology of the Lake Region of south-central Chile (39°–42°S): preliminary results. J S Am Earth Sci 1:309–316

    Article  Google Scholar 

  • Munoz J, Duhart P, Crignola P, Farmer GL, Stern CR (1989) Alkaline magmatism within the segment 38–39°S of the Plio-Quaternary volcanic belt of the southern South American continental margin. J Geophys Res 94:4545–4560

    Google Scholar 

  • Munoz J, Duhart P, Farmer L (2000) The relation of the mid-Tertiary coastal magmatic belt in South-Central Chile to the late Oligocene increase in plate convergence rate. Rev Geol Chile 27(2):177–203

    Article  Google Scholar 

  • Pankhurst RJ, Rojas L, Cembrano J (1992) Magmatism and tectonics in continental Chile, Chile (41°–42°30’S). Tectonophysics 205:283–294

    Article  Google Scholar 

  • Pankhurst RJ, Herve F (1994) Granitoid age distribution and emplacement control in the North Patagonian Batholith, Aysen, Southern Chile. 7. Congreso Geologíco Chileno, Actas 2:1409–1413

    Google Scholar 

  • Pankhurst RJ, Weaver SD, Herve F, Larrondo P (1999) Mesozoic-Cenozoic evolution of the North Patagonian Batholith in Aysen, southern Chile. J Geol Soc London 156:673–694

    Google Scholar 

  • Parada MA, Nyström JO, Levi B (1999) Multiple sources for the Coastal Batholith of central Chile (31–34°S): geochemical and Sr-Nd isotopic evidence and tectonic implications. Lithos 46:505–521

    Article  Google Scholar 

  • Pardo Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics 6(3):233–248

    Google Scholar 

  • Pearce JA, Leat PT, Barker PF, Millar IL (2001) Geochemical tracing of Pacific-to-Atlantic upper mantle flow through the Drake Passage. Nature 410:457–461

    Article  Google Scholar 

  • Pilger RH (1984) Cenozoic plate kinematics, subduction and magmatism: South American Andes. J Geol Soc London 141(5):793–802

    Google Scholar 

  • Ramos VA (1989) Andean foothills structures in northern Magellanes Basin, Argentina. AAPG 73:887–903

    Google Scholar 

  • Ramos VA (2005) Seismic ridge subduction and topography: foreland deformation in the Patagonian Andes. Tectonophysics 399:73–86

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36(4):891–931

    Google Scholar 

  • Reutter K-J (2001) Le Ande centrali: elementi di un’orogenesi di margine continental attivo, Acta Naturalia L’Ateneo Parmense 37(1–2):5–37

    Google Scholar 

  • Reutter K-J, Scheuber E, Helmcke D (1991) Structural evidence of orogen-parallel strike-slip displacements in the Precordillera of northern Chile. Geol Rundsch 80:135–153

    Article  Google Scholar 

  • Reutter KJ, Scheuber E, Chong G (1996) The Precordilleran fault system of Chuquicamata, Northern Chile: evidence for reversals along arc-parallel strike-slip faults. Tectonophysics 259:213–228

    Article  Google Scholar 

  • Rogers G, Hawkesworth CJ (1989) A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth Planet Sci Lett 91:271–285

    Article  Google Scholar 

  • Royden L (1996) Coupling and decoupling of crust and mantle in convergent orogens: implications for strain partitioning in the crust. J Geophys Res 101(B8):17679–17705

    Article  Google Scholar 

  • Rushmer T (1993) Experimental high pressure granulites: some applications to natural mafic xenolith suites and Archean granulite terranes. Geology 21:411–414

    Article  Google Scholar 

  • Sacks IS (1983) The subduction of young lithosphere. J Geophys Res 88:3355–3366

    Article  Google Scholar 

  • Sandeman HA, Clark AH, Farrar E (1995) An integrated tectonomagmatic model for the evolution of the southern Peruvian Andes (13–20°S) since 55 Ma. Int Geol Rev 37:1039–1073

    Article  Google Scholar 

  • Scheuber E, Gonzales G (1999) Tectonics of the Jurassic-Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°–26°S): a story of crustal deformation along a convergent plate margin. Tectonics 18(5): 895–910

    Article  Google Scholar 

  • Scheuber E, Reutter K-J (1992) Magmatic arc tectonics in the central Andes between 21° and 25°S. Tectonophysics 205:127–140

    Article  Google Scholar 

  • Scheuber E, Bogdanic T, Jensen A, Reutter K-J (1994) Tectonic development of the North Chilean Andes in relation to plate convergence and magmatism since the Jurassic. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer-Verlag, Berlin Heidelberg New York, pp 121–139

    Google Scholar 

  • Scholl WD, von Huene RE, Vallier T, Howell DG (1980) Sedimentation masses and concepts about tectonic processes at underthrust ocean margins. Geology 8:564–568

    Article  Google Scholar 

  • Silver PG, Russo RM, Lithgow-Bertelloni C (1998) Coupling of South American and African plate motion and plate deformation. Science 279:60–63

    Article  Google Scholar 

  • Somoza R (1998) Updated Nazca (Farallon)-South America relative motions during the last 40 Ma: implications for mountain building in the central Andean region. J South Amer Earth Sci 11(3):211–215

    Article  Google Scholar 

  • St Amand P, Allen CR (1960) Strike-slip faulting in northern Chile. Geol Soc Am Bull Abs 71:8965

    Google Scholar 

  • Stocker RL, Ashby MF (1973) On the rheology of the upper mantle. Rev Geophys 11:391–426

    Google Scholar 

  • Suarez M, De La Cruz R (2001) Jurassic to Miocene K-Ar dates from eastern central Patagonian Cordillera plutons, Chile (45–48°S). Geol Mag 138(1):53–66

    Article  Google Scholar 

  • Tebbens SF, Cande SC (1997) Southeast Pacific tectonic evolution from early Oligocene to Present. J Geophys Res 102(B6):12061–12084

    Article  Google Scholar 

  • Tomlinson AJ, Blanco N (1997) Structural evolution and displacement history of the West Fault system, Precordillera, Chile. VIII Congreso Geologíco Chileno, Actas 4, pp 1873–1882

    Google Scholar 

  • Turner S, Hawkesworth C (1998) Using geochemistry to map mantle flow beneath the Lau Basin. Geology 26:1019–1022

    Article  Google Scholar 

  • Van Westrenen W, Blundy JD, Wood BJ (2001) High field strength element/rare earth element fractionation during partial melting in the presence of garnet: implications for identification of mantle heterogeneities. Geochem Geophys Geosyst 2: doi 2000GC000133

    Google Scholar 

  • Von Blanckenburg F, Davies JH (1995) Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics 14:120–131

    Article  Google Scholar 

  • von Huene RE, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29:279–316

    Google Scholar 

  • Wendt JL, Regelous M, Collerson KD, Ewart A (1997) Evidence for a contribution from two mantle plumes to the island-arc lavas from northern Tonga. Geology 25:611–614

    Article  Google Scholar 

  • Wigger PJ, Schmitz M, Araneda M, Asch G, Baldzuhn S, Giese P, Heinsohn WD, Martinez E, Ricaldi E, Rüwer P, Viramonte J (1994) Variation in the crustal structure of the southern central Andes deduced from seismic refraction investigations. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer-Verlag, Berlin Heidelberg New York, pp 23–48

    Google Scholar 

  • Yanez G, Cembrano J, Pardo M, Ranero C, Selles D (2002) The Challenger-Juan Fernandez-Maipo major transition of the Nazca-Andean subduction system at 33–34°S: geodynamic evidence and implications. J S Am Earth Sci 15:23–38

    Article  Google Scholar 

  • Yuan X, Sobolev SV, Kind R, Oncken O, Bock G, Asch G, Schurr B, Graeber F, Rudloff A, Hanka W, Wylegalla K, Tibi R, Haberland C, Rietbrock A, Giese P, Wigger P, Rower P, Zandt G, Beck S, Wallace T, Pardo M, Comte D (2000) New constraints on subduction and collision processes in the Central Andes from P-to-S converted seismic phases. Nature 408(6815):958–961

    Article  Google Scholar 

  • Yuan X, Asch G, Bataille K, Bock G, Bohm M, Echtler H, Kind R, Oncken O, Wölbern I (2006) Deep seismic images of the southern Andes. In: Kay SM, Ramos V (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S lat). Geol Soc Am Spec P 407

    Google Scholar 

  • Zandt G, Velasco AA, Beck SL (1994) Composition and thickness of the southern altiplano crust, Bolivia. Geology 22:1003–1006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haschke, M. et al. (2006). Central and Southern Andean Tectonic Evolution Inferred from Arc Magmatism. In: Oncken, O., et al. The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-48684-8_16

Download citation

Publish with us

Policies and ethics