Skip to main content

Mapping Genes that Modulate Mouse Brain Development: A Quantitative Genetic Approach

  • Chapter
Mouse Brain Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 30))

Abstract

The complexity of CNS development is staggering. In mice a total of approximately 75 million neurons and 25 million glial cells are generated, moved, connected, and integrated into hundreds of different circuits over a period of 1 month. The process is coordinated by the expression of a large fraction of the genome — as many as 40 000 genes are involved (Sutcliffe 1988; Adams et al. 1993). These same genes coordinate the development of the human brain, but a thousand times more neurons are generated (Williams and Herrup 1988) and their integration and training take more than a decade. While 5000 of these genes have common roles in cellular metabolism, this still leaves a huge complement that have selective, transient, and partially redundant roles in the development of different parts of the brain (Usui et al. 1994; Gautvik et al. 1996). Reductionist approaches that focus on isolated processes and molecules may seem hopelessly inadequate, but they are an absolute necessity at this early stage of analysis and understanding.

In my opinion there are only quantitative differences, not qualitative differences, between the brain of a man and that of a mouse. (Ramón y Cajal 1890)

The difference in behavioral capacity between man and chimpanzee may be no more than the addition of one cell generation in the segmentation of the neuroblasts which form the cerebral network. (Lashley 1949)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboitiz F (1996) Does bigger mean better? Evolutionary determinants of brain size and structure. Brain Behav Evol 47: 225–245

    Article  PubMed  CAS  Google Scholar 

  • Adams MD, Soares MB, Kerlavage AR, Fields C, Venter JC (1993) Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nat Genet 4: 373–380

    Article  PubMed  CAS  Google Scholar 

  • Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis. The brain and the digestive system in human and primate evolution. Curr Anthropol 36: 199–221

    Google Scholar 

  • Airey DC, Lu L, Strom RC, Gilissen G, Williams RW (1999) Cerebellum-specific QTLs in the mouse brain. Int Mouse Genome Cont 13: E9

    Google Scholar 

  • Airey DC, Strom RC, Williams RW (1998) Genetic architecture of normal variation in cerebellar size. Soc Neurosci Abstr 24: 303

    Google Scholar 

  • Allman JM, McLaughlin T, Hakeem A (1993) Brain weight and life-span in primate species. Proc Natl Acad Sci USA 90: 118–122

    Article  PubMed  CAS  Google Scholar 

  • Armstrong E (1993) Relative brain size and metabolism in mammals. Science 220: 1302–1304

    Article  Google Scholar 

  • Atchley WR, Riska B, Kohn LAP, Plummer AA, Rutledge JJ (1984) A quantitative genetic analysis of brain and body size associations, their origin and ontogeny: data from mice. Evolution 38: 1165–1179

    Article  Google Scholar 

  • Bartley AJ, Jones DW, Weinberger DR (1997) Genetic variability of human brain size and cortical gyral patterns. Brain 120: 257–269

    Article  PubMed  Google Scholar 

  • Belknap JK, Phillips TJ, O’Toole LA (1992) Quantitative trait loci associated with brain weight in the BXD/Ty recombinant inbred mouse strains. Brain Res Bull 29: 337–344

    Article  PubMed  CAS  Google Scholar 

  • Belknap JK, Metten P, Helms ML, O’Toole LA, Angeli-Gade S, Crabbe JC, Phillips TJ (1993) Quantitative trait loci (QTL) applications to substances of abuse: physical dependence studies with nitrous oxide and ethanol in BXD mice. Behav Genet 23: 213–222

    Article  PubMed  CAS  Google Scholar 

  • Brockmann GA, Haley CS, Renne U, Knott SA, Schwerin M (1998) Quantitative trait loci affecting body weight and fatness from a mouse line selected for extreme high growth. Genetics 150: 369–381

    PubMed  CAS  Google Scholar 

  • Buck KJ, Metten P, Belknap JK, Crabbe JC (1997) Quantitative trait loci involved in genetic predisposition to acute alcohol withdrawal in mice. J Neurosci 17: 3946–3955

    PubMed  CAS  Google Scholar 

  • Cheverud JM, Routman EJ, Duarte FAM, van Swinderen B, Cothran K, Perel C (1996) Quantitative trait loci for murine growth. Genetics 142: 1305–1319

    PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971

    PubMed  CAS  Google Scholar 

  • Clark JB, Bates TE, Almeida A, Cullingford T, Warwick J (1994) Energy metabolism in the developing mammalian brain. Biochem Soc Trans 22: 980–983

    PubMed  CAS  Google Scholar 

  • Collins RA (1970) Experimental modification of brain weight and behavior in mice: an enrichment study. Dev Psychobiol 3: 145–155

    Article  PubMed  CAS  Google Scholar 

  • Crabbe JC, Belknap JK, Buck KJ (1994) Genetic animal models of alcohol and drug abuse. Science 264: 1715–1723

    Article  PubMed  CAS  Google Scholar 

  • Crusio WE (1992) Quantitative genetics. In: Goldowitz D, Wahlsten D, Wimer RE (eds) Techniques for the genetic analysis of brain and behavior. Elsevier, Amsterdam, pp 231–250

    Google Scholar 

  • Crusio WE, Schwegler H, van Abeelen JHF (1989) Behavioral responses to novelty and structural variation of hippocampus in mice. I. Quantitative-genetic analysis of behavior in the open field. Behav Brain Res 32: 75–80

    Google Scholar 

  • Damns K, Hitzemann B, Hitzemann R (1996) Genetics, neuroleptic-response and the organization of cholinergic neurons in the mouse striatum. J Pharmacol Exp Ther 279: 1430–1438

    Google Scholar 

  • Darvasi A (1997) Interval-specific congenic strains (ISCS): an experimental design for mapping a QTL into a 1-centiMorgan interval. Mamm Gen 8: 163–167

    Article  CAS  Google Scholar 

  • Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18: 19–24

    Article  PubMed  CAS  Google Scholar 

  • DeVoogd TJ, Krebs JR, Healy SD, Purvis A (1993) Relations between song repertoire size and the volume of brain nuclei related to song: comparative evolutionary analyses amongst oscine birds. Proc R Soc Lond B 254: 75–82

    Article  CAS  Google Scholar 

  • Dietrich WF, Miller JC, Steen RG, Merchant M, Damron D, Nahf R, Gross A, Joyce DC, Wessel M, Dredge RD, Marquis A, Stein LD, Goodman N, Page DC, Lander ES (1994) A genetic map of the 4006 simple sequence length polymorphisms. Nat Genet 7: 220–245

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg JF, Wilson DE (1978) Relative brain size and feeding strategies in the chiroptera. Evolution 32: 740–751

    Article  Google Scholar 

  • Eleftheriou BE, Elias MF, Castellano C, Oliverio A (1975) Cortex weight: a genetic analysis in the mouse. J Hered 66: 207–212

    PubMed  CAS  Google Scholar 

  • Festing MFW (1993) Origins and characteristics of inbred strains of mice. Mouse Genome 91: 393 - 509 http://www.informatics.jax.org/strtools.html

    Google Scholar 

  • Flint J, Corley R, DeFries JC, Fulker DW, Gray JA, Miller S, Collins AC (1995) A simple genetic basis for a complex psychological trait in laboratory mice. Science 269: 1432–1435

    Article  PubMed  CAS  Google Scholar 

  • Frankel WN (1995) Taking stock of complex trait genetics in mice. Trends Gen 11: 471–477

    Article  CAS  Google Scholar 

  • Fuller JL (1979) Fuller BWS lines: history and results. In: Hahn ME, Jensen C, Dudek BC (eds) Development and evolution of brain size. Academic Press, New York, pp 187–204

    Google Scholar 

  • Fuller JL, Geils HD (1972) Brain growth in mice selected for high and low brain weight. Dev Psychobiol 5: 307–318

    Article  PubMed  CAS  Google Scholar 

  • Fuller JL, Herman BH (1972) Effect of genotype and practice on behavioral development in mice. Dev Psychobiol 7: 21–30

    Article  Google Scholar 

  • Fuller JL, Wimer RE (1966) Neural, sensory, and motor functions. In: Green EL (ed) The biology of the laboratory mouse, 2nd edn. Dover, New York, pp 609–628

    Google Scholar 

  • Gautvik KM, De Lecea L, Gautvik VT, Danielson PE, Tranque P, Dopazo A, Bloom FE, Sutcliffe JG (1996) Overview of the most prevalent hypothalamus-specific mRNAs, as identified by directional tag PCR subtraction. Proc Natl Acad Sci USA 93: 8733–8738

    Article  PubMed  CAS  Google Scholar 

  • Gilissen E, Williams RW (1997) Genetic dissection and QTL analysis of forebrain, hindbrain, olfactory bulb, and cerebellum. Soc Neurosci Abstr 23: 864

    Google Scholar 

  • Gilissen E, Zilles K (1996) The calcarine sulcus as an estimate of the total volume of the human striate cortex: a morphometric study of reliability and intersubject variability. J Brain Res 37: 57–66

    CAS  Google Scholar 

  • Groot PC, Moen CJA, Dietrich W, Stoye JP, Lander ES, Demant P (1992) The recombinant congenic strains for analysis of multigenic traits: genetic composition. FASEB J 6: 2826–2835

    PubMed  CAS  Google Scholar 

  • Hahn ME, Haber SB (1978) A diallel analysis of brain and body weight in male inbred laboratory mice ( Mus musculus ). Behav Genet 8: 251–260

    Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315–324

    Article  PubMed  CAS  Google Scholar 

  • Henderson ND (1979) Dominance for large brains in laboratory mice. Behav Genet 9: 45–49

    PubMed  CAS  Google Scholar 

  • Herrup K, Shojaeian-Zanjani H, Panzini L, Sunter K, Mariani 1 (1996) The numerical matching of source and target populations in the CNS: the inferior olive to Purkinje cell projection. Dev Brain Res 96: 28–35

    CAS  Google Scholar 

  • Hitzemann B, Damns K, Kanes S, Hitzemann R (1994) Further studies on the relationship between dopamine cell density and haloperidol-induced catalepsy. J Pharmacol Exp Ther 271: 969–976

    PubMed  CAS  Google Scholar 

  • Hofman MA (1983) Evolution of the brain in neonatal and adult placental mammals: a theoretical approach. J Theor Biol 105: 317–332

    Article  PubMed  CAS  Google Scholar 

  • Horton JC, Hocking DR (1996) Intrinsic variability of ocular dominance column periodicity in normal macaque monkeys. J Neurosci 16: 7228–7339

    PubMed  CAS  Google Scholar 

  • Hoskins SG (1985) Induction of the ipsilateral retinothalamic projection in Xenopus laevis by thryoxine: results and speculation. J Neurobiol 17: 203–229

    Article  Google Scholar 

  • Jacobs LF, Gaulin SC, Sherry DF, Hoffman GE (1990) Evolution of spatial cognition: sex-specific patterns of spatial behavior predict hippocampal size. Proc Natl Acad Sci USA 87: 6349–6352

    Article  PubMed  CAS  Google Scholar 

  • Johnson TE, DeFries JC, Markel PD (1992) Mapping quantitative trait loci for behavioral traits in the mouse. Behav Genet 22: 635–653

    Article  PubMed  CAS  Google Scholar 

  • Kanes S, Damns K, Cipp L, Gatley J, Hitzemann B, Rasmussen E, Sanderson S, Silverman M, Hitzemann R (1996) Mapping the genes for haloperidol-induced catalepsy. J Pharmacol Exp Ther 277: 1016–1025

    PubMed  CAS  Google Scholar 

  • Katz HB, Davies CA (1983) The separate and combined effects of early undernutrition and environmental complexity at different ages on cerebral measures in rats. Dev Psychobiol 16: 47–58

    Article  PubMed  CAS  Google Scholar 

  • Keverne EB, Martel FL, Nevison CM (1996) Primate brain evolution: genetic and functional considerations. Proc R Soc Lond B 263: 689–696

    Article  CAS  Google Scholar 

  • Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution 33: 234–251

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199

    PubMed  CAS  Google Scholar 

  • Lander E, Kruglyak L (1997) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11: 241–247

    Article  Google Scholar 

  • Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265: 2037–2048

    Article  PubMed  CAS  Google Scholar 

  • Lashley KS (1949) Persistent problems in the evolution of mind. Q Rev Biol 24: 28–42

    Article  PubMed  CAS  Google Scholar 

  • Le Roy I, Perex-Diaz F, Cherfouh A, Roubertoux PL (1999) Preweanling sensorial and motor development in laboratory mice: quantitative trait loci mapping. Dev Psychobiol 34: 139–158.

    Article  PubMed  Google Scholar 

  • Lewontin RC (1957) The adaptations of populations to varying environments. Cold Spring Harbor Symp Quant Biol 22: 395–408

    Article  PubMed  CAS  Google Scholar 

  • Lipp HP (1989) Non-mental aspects of encephalization: the forebrain as a playground of mammalian evolution. Hum Evol 4: 45–53

    Article  Google Scholar 

  • Lipp HP, Schwegler H, Crusio WE, Wolfer DP, Leisinger-Trigona MC, Heimrich B, Driscoll P (1989) Using genetically-defined rodent strains for the identification of hippocampal traits relevant for two-way avoidance behavior: a non-invasive approach. Experientia 45: 845–859

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Airey DC, Zhou G, Williams RW (1999) New murine hippocampus-specific QTL maps to distal Chr 1. Int Mouse Genome Conf 13: E44

    Google Scholar 

  • Luo J, Sucove HM, Bader JA, Evans RM, Giguere V (1996) Compound mutants for retinoic acid receptor (RAR) beta and RAR alpha 1 reveal developmental functions of multiple RAR beta isoforms. Mech Dev 55: 33–44

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, San Francisco

    Google Scholar 

  • Manly KF, Olson JM (1999) Overview of QTL mapping software and introduction to Map Manager QT. Mamm Genome 10: 327–334

    Article  PubMed  CAS  Google Scholar 

  • Martin RD (1981) Relative brain size and metabolic rate in terrestrial vertebrates. Nature 293: 57–60

    Article  PubMed  CAS  Google Scholar 

  • Pagel MD, Havey PH (1990) Diversity in the brain sizes of newborn mammals: allometry, energetics, or life history tactics? Bioscience 40: 116–122

    Article  Google Scholar 

  • Pakkenberg B, Gundersen HJG (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384: 312–320

    Article  PubMed  CAS  Google Scholar 

  • Piedrafita FJ, Pfahl M (1995) Thyroid hormone receptors. In: Baeuerle PA (ed) Inducible gene expression, vol 2. Birkhäuser, Basel, pp 157–185

    Chapter  Google Scholar 

  • Plomin R, McClearn GE (1993) Quantitative trait loci ( QTL) analyses and alcohol-related behaviors. Behav Genet 23: 197–211

    Google Scholar 

  • Plomin R, McClearn GE, Gora-Maslak G, Neiderhiser JM (1991) Use of recombinant inbred strains to detect quantitative trait loci associated with behavior. Behav Genet 21: 99–116

    Article  PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1890) Estudios sobre la corteza cerebral humana. III. Cortez motriz. Rev Trimestr Microgrâf 5: 1–11. [Trans! by Jacobson M (1991) In: Developmental neurobiology, 3rd edn. Plenum, New York, p 401]

    Google Scholar 

  • Rensch B (1956) Increase of learning capability with increase of brain-size. Am Nat 90: 81–95

    Article  Google Scholar 

  • Rice DS, Williams RW, Goldowitz D (1995) Genetic control of retinal projections in inbred strains of albino mice. J Comp Neurol 354: 459–469

    Article  PubMed  CAS  Google Scholar 

  • Rise ML, Frankel WN, Coffing JM, Seyfried TN (1991) Genes for epilepsy mapping in the mouse. Science 253: 669–673

    Article  PubMed  CAS  Google Scholar 

  • Roderick TH (1979) Genetic techniques as tools of analysis of brain-behavior relationships. In: Hahn ME, Jensen C, Dudek BC (eds) Development and evolution of brain size. Academic Press, New York, pp 133–145

    Google Scholar 

  • Roderick TH, Wimer RE, Wimer CC, Schwartzkroin PA (1973) Genetic and phenotypic variation in weight of brain and spinal cord between inbred strains of mice. Brain Res 64: 345–353

    Article  PubMed  CAS  Google Scholar 

  • Roderick TH, Wimer RE, Wimer CC (1976) Genetic manipulation of neuroanatomical traits. In: Petrinovich L, McGaugh L (eds) Knowing, thinking, and believing. Plenum, New York, pp 143–178

    Google Scholar 

  • Roff DA (1997) Evolutionary quantitative genetics. Chapman & Hall, New York

    Book  Google Scholar 

  • Sacher GA, Staffeldt EF (1974) Relation of gestation time to brain weight for placental mammals: implication for the theory of vertebrate growth. Am Nat 108: 593–615

    Article  Google Scholar 

  • Schwegler H, Lipp HP (1983) Hereditary covariations of neuronal circuitry and behavior: correlations between the proportions of hippocampal synaptic fields in regio inferior and two-way avoidance in mice and rats. Behav Brain Res 7: 297–305

    Article  Google Scholar 

  • Seyfried TN, Daniel WL (1977) Inheritance of brain weight in two strains of mice. J Hered 68: 337–338

    Google Scholar 

  • Seyfried TM, Glaser GH, Yu RK (1979) Genetic variability for regional brain gangliosides in five strains of young mice. Biochem Genet 17: 43–55

    Article  PubMed  CAS  Google Scholar 

  • Sprott RL, Staats J (1981) Behavioral studies using genetically defined mice–a bibliography. Behav Genet 11: 73–84

    Article  PubMed  CAS  Google Scholar 

  • Stensaas SS, Donald MA, Eddington DK, Dobelle WH (1974) The topography and variability of the primary visual cortex in man. J Neurosurg 40: 747–755

    Article  PubMed  CAS  Google Scholar 

  • Storer JB (1967) Relation of lifespan to brain weight, body weight, and metabolic rate among inbred mouse strains. Exp Gerontol 2: 173–182

    Article  Google Scholar 

  • Strom RC (1999) Genetic control of neuron number. Dissertation, University of Tennessee, Memphis http://nervenet.org

    Google Scholar 

  • Strom RC, Williams RW (1997) Mapping genes that control variation in brain weight using F2 intercross progeny. Soc Neurosci Abstr 23: 864

    Google Scholar 

  • Strom RC, Williams RW (1998) Cell production and cell death in the generation of variation in neuron number. J Neurosci 18: 9948–9953

    PubMed  CAS  Google Scholar 

  • Sutcliffe JG (1988) mRNA in the mammalian central nervous system. Annu Rev Neurosci 11:157–198

    Article  PubMed  CAS  Google Scholar 

  • Takahashi JS, Pinto LH, Vitaterna MH (1994) Forward and reverse genetic approaches to behavior in the mouse. Science 1724: 1724–1733

    Article  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27: 205–233

    Article  PubMed  CAS  Google Scholar 

  • Taylor BA (1978) Recombinant inbred strains. Use in gene mapping. In: Morse H (ed) Origins of inbred mice. Academic Press, New York, pp 423–438

    Google Scholar 

  • Toth LA, Williams RW (1988) Genetic analysis of complex quantitative traits using inbred mice. Sleep Res Soc Bull 4: 50–56

    Google Scholar 

  • Toth LA, Williams RW (1999) Strain-related differences in slow wave sleep and rapid-eyemovement sleep in C57BL/6J and BALB/c mice. Behav Genet 29: in press

    Google Scholar 

  • Usui H, Falk JD, Dopazo A, de Lecea L, Erlander MG, Sutcliffe JG (1994) Isolation of clones of rat striatum-specific mRNAs by directional tag PCR subtraction. J Neurosci 14: 4915–4926

    PubMed  CAS  Google Scholar 

  • Vadasz C, Sziraki I, Sasvari M, Kabai P, Murthy LR, Saito M, Laszlovszky I (1998) Analysis of the mesotelencephalic dopamine system by quantitative-trait locus introgression. Neurochem Res 23: 1337–1354

    Article  PubMed  CAS  Google Scholar 

  • Wahlsten D (1975) Genetic variation in the development of mouse brain and behavior: evidence from the middle postnatal period. Dev Psychobiol 8: 371–380

    Article  PubMed  CAS  Google Scholar 

  • Wahlsten D (1983) Maternal effects on mouse brain weight. Dev Brain Res 9: 216–221

    Article  Google Scholar 

  • Wahlsten D (1992) The problem of test reliability in genetic studies of brain-behavior correlation. In: Goldowitz D, Wahlsten D, Wimer RE (eds) Techniques for the genetic analysis of brain and behavior: focus on the mouse. Elsevier, Amsterdam, pp 407–422

    Google Scholar 

  • Wahlsten D (1994) The intelligence of heritability. Can Psychol 35: 244–267

    Article  Google Scholar 

  • Ward BC, Nordeen EJ, Nordeen KW (1998) Individual variation in neuron number predicts differences in the propensity for avian vocal imitation. Proc Natl Acad Sci USA 95: 1277–1282

    Article  PubMed  CAS  Google Scholar 

  • Wetts R, Herrup K (1983) Direct correlation between Purkinje and granule cell number in the cerebella of lurcher chimeras and wild-type mice. Dev Brain Res 10: 41–47

    Article  Google Scholar 

  • Wikström L, Johansson C, Salto C, Barlow C, Campos Barros A, Baas F, Forrest D, Thorén P, Vennström B (1998) Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor-1. EMBO J 17: 455–461

    Article  PubMed  Google Scholar 

  • Williams RW (1998) Neuroscience meets quantitative genetics: using morphometric data to map genes that modulate CNS architecture. In: Morrison J, Hof P (eds) Short course in quantitative neuroanatomy. Society of Neuroscience, Washington DC, pp 66–78. http://nervenet.org/papers/ShortCourse98.html

    Google Scholar 

  • Williams RW, Herrup K (1988) The control of neuron number. Annu Rev Neurosci 11: 423–453

    Article  PubMed  CAS  Google Scholar 

  • Williams RW, Rakic P (1988) Three-dimensional counting: an accurate and direct method to estimate numbers of cells in sectioned material. J Comp Neurol 278: 344–352 http://nervenet.org

    Article  PubMed  CAS  Google Scholar 

  • Williams RW, Zhou G (1999) Genetic control of eye size: a novel quantitative genetic approach. Invest Ophthalmol Vis Sci Suppl 40: S964

    Google Scholar 

  • Williams RW, Cavada C, Reinoso-Suarez F (1993) Rapid evolution of the visual system: a cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat. J Neurosci 13:208–228 http://nervenet.org

    PubMed  CAS  Google Scholar 

  • Williams RW, Strom RC, Rice DS, Goldowitz D (1996a) Genetic and environmental control of variation in retinal ganglion cells number in mice. J Neurosci 16: 7193–7205 http://nervenet.org

    PubMed  CAS  Google Scholar 

  • Williams RW, Strom RC, Goldowitz D (1996b) Mapping quantitative trait loci that control normal variation in brain weight in the mouse. Soc Neurosci Abstr 22: 518

    Google Scholar 

  • Williams RW, Goldowitz DG, Strom RC (1997) Brain weight in relation to body weight, age, and sex: a multiple regression analysis. Soc Neurosci Abstr 23: 864

    Google Scholar 

  • Williams RW, Strom RC, Goldowitz D (1998a) Natural variation in neuron number in mice is linked to a major quantitative trait locus on Chr 11. J Neurosci 18:138–146 http://nervenet.org

    PubMed  CAS  Google Scholar 

  • Williams RW, Strom RC, Zhou G, Yan Z (1998b) Genetic dissection of retinal development. Sem in Cell Dev Biol 9:249–255 http://nervenet.org

    Article  CAS  Google Scholar 

  • Wimer C (1979) Correlates of mouse brain weight: search for component morphological traits. In: Hahn ME, Jensen C, Dudek BC (eds) Development and evolution of brain size. Academic, New York, pp 147–162

    Google Scholar 

  • Wimer C, Prater L (1966) Behavioral differences in mice genetically selected for high and low brain weight. Psychol Rep 19: 675–681

    Article  PubMed  CAS  Google Scholar 

  • Wimer RE, Wimer CC (1985) Animal behavior genetics: a search for the biological foundation of behavior. Annu Rev Psychol 36: 171–218

    Article  PubMed  CAS  Google Scholar 

  • Wimer RE, Wimer CC (1989) On the sources of strain and sex differences in granule cell number in the dentate area of house mice. Dev Brain Res 48: 167–176

    Article  CAS  Google Scholar 

  • Wimer RE, Wimer CC, Roderick TH (1969) Genetic variability in forebrain structures between inbred strains of mice. Brain Res 16: 257–264

    Article  PubMed  CAS  Google Scholar 

  • Wimer RE, Wimer CC, Vaughn JE, Barber RP, Balvanz BZ, Chernow CR (1978) The genetic organization of neuron number in the area dentata of mouse mice. Brain Res 157: 105–122

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, Vol 4. Variability within and among natural populations. U Chicago, Chicago

    Google Scholar 

  • Zamenhof S, van Marthens E (1976) Neonatal and adult brain parameters in mice selected for adult brain weight. Dev Psychobiol 9: 587–593

    Article  CAS  Google Scholar 

  • Zamenhof S, van Martens E, Gauel L (1971) DNA (cell number) in neonatal brain: second generation (F2) alternation by maternal ( FO) dietary protein restriction. Science 172: 850–851

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Williams RW (1999a) Mouse models for the analysis of myopia: an analysis of variation in eye size of adult mice. Optom Vis Sci 76:408–418 nervenet.org

    CAS  Google Scholar 

  • Zhou G, Williams RW (1999b) Eyel and Eye2: Gene loci that modulate eye size, lens weight, and retinal area in mouse. Invest Ophthalmol Vis Sci 40:817–825 nervenet.org

    Google Scholar 

  • Zhou G, Strom RC, Giguere V, Williams RW (1998) Modulation of retinal cell populations and eye size in retinoic acid receptor knockout mice. Soc Neurosci Abst 24: 1033

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Williams, R.W. (2000). Mapping Genes that Modulate Mouse Brain Development: A Quantitative Genetic Approach. In: Goffinet, A.M., Rakic, P. (eds) Mouse Brain Development. Results and Problems in Cell Differentiation, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48002-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48002-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53684-7

  • Online ISBN: 978-3-540-48002-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics