Skip to main content

Molecular and Clinical Aspects of Proteasome Inhibition in the Treatment of Cancer

  • Chapter
Targeted Therapies in Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 176))

Abstract

The proteasome is a multicatalytic threonine protease responsible for intracellular protein turnover in eukaryotic cells, including the processing and degradation of several proteins involved in cell cycle control and the regulation of apoptosis. Preclinical studies have shown that the treatment with proteasome inhibitors results in decreased proliferation, induction of apoptosis, and sensitization of tumor cells against conventional chemotherapeutic agents and irradiation. The effects were conferred to stabilization of p21, p27, Bax, p53, I-κB, and the resulting inhibition of the nuclear factor-κB (NF-κB) activation. Bortezomib is the first proteasome inhibitor that has entered clinical trials. In multiple myeloma, both the FDA (United States Food and Drug Administration) and EMEA (European Medicine Evaluation Agency) granted an approval for the use of bortezomib (Velcade, Millennium Pharmaceuticals, Cambridge, MA, USA) for the treatment of relapsed multiple myeloma. At present, clinical trials are examining the activity in a variety of solid tumors and hematological malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams J (2003) The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29[Suppl 1]:3–9

    Article  PubMed  CAS  Google Scholar 

  • Adams J, Behnke M, Chen S, Cruickshank AA, Dick LR, Grenier L, Klunder JM, Ma YT, Plamondon L, Stein RL (1998) Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett 8:333–838

    Article  PubMed  CAS  Google Scholar 

  • Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622

    PubMed  CAS  Google Scholar 

  • Aghajanian C, Soignet S, Dizon DS, Pien CS, Adams J, Elliott PJ, Sabbatini P, Miller V, Hensley ML, Pezzulli S, Canales C, Daud A, Spriggs DR (2002) A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res 8:2505–2511

    PubMed  CAS  Google Scholar 

  • Arrigo AP, Tanaka K, Goldberg AL, Welch WJ (1988) Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 331:192–194

    Article  PubMed  CAS  Google Scholar 

  • Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 107:241–246

    Article  PubMed  CAS  Google Scholar 

  • Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W, Royer HD, Grinstein E, Greiner A, Scheidereit C, Dorken B (1997) Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 100:2961–2969

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV, Wu GS, Omura S, el-Deiry WS (1996) Proteasome-dependent regulation of p21WAF1/CIP1 expression. Biochem Biophys Res Commun 227:564–569

    Article  PubMed  CAS  Google Scholar 

  • Boyer SN, Wazer DE, Band V (1996) E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 56:4620–4624

    PubMed  CAS  Google Scholar 

  • Braun HA, Umbreen S, Groll M, Kuckelkorn U, Mlynarczuk I, Wigand ME, Drung I, Kloetzel PM, Schmidt B (2005) Tripeptide mimetics inhibit the 20 S proteasome by covalent bonding to the active threonines. J Biol Chem 280:28394–28401

    Article  PubMed  CAS  Google Scholar 

  • Campanero MR, Flemington EK (1997) Regulation of E2F through ubiquitin-proteasome-dependent degradation: stabilization by the pRB tumor suppressor protein. Proc Natl Acad Sci U S A 94:2221–2226

    Article  PubMed  CAS  Google Scholar 

  • Chang YC, Lee YS, Tejima T, Tanaka K, Omura S, Heintz NH, Mitsui Y, Magae J (1998) mdm2 and bax, downstream mediators of the p53 response, are degraded by the ubiquitin-proteasome pathway. Cell Growth Differ 9:79–84

    PubMed  CAS  Google Scholar 

  • Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, Mitsiades C, Mitsiades N, Yasui H, Letai A, Ovaa H, Berkers C, Nicholson B, Chao TH, Neuteboom ST, Richardson P, Palladino MA, Anderson KC (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8:407–419

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A, DiGiuseppe JA, Bercovich B, Orian A, Richter JD, Schwartz AL, Brodeur GM (1991) Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc Natl Acad Sci U S A 88:139–143

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22:442–451

    Article  PubMed  CAS  Google Scholar 

  • Clurman BE, Sheaff RJ, Thress K, Groudine M, Roberts JM (1996) Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev 10:1979–1990

    Article  PubMed  CAS  Google Scholar 

  • Cooper KF, Mallory MJ, Strich R (1999) Oxidative stress-induced destruction of the yeast C-type cyclin Ume3p requires phosphatidylinositol-specific phospholipase C and the 26S proteasome. Mol Cell Biol 19:3338–3348

    PubMed  CAS  Google Scholar 

  • Corey EJ, Li WD (1999) Total synthesis and biological activity of lactacystin, omuralide and analogs. Chem Pharm Bull (Tokyo) 47:1–10

    PubMed  CAS  Google Scholar 

  • Cortes J, Thomas D, Koller C, Giles F, Estey E, Faderl S, Garcia-Manero G, McConkey D, Ruiz SL, Guerciolini R, Wright J, Kantarjian H (2004) Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin Cancer Res 10:3371–3376

    Article  PubMed  CAS  Google Scholar 

  • Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, Baldwin AS (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factorkappaB inhibition. Cancer Res 61:3535–3540

    PubMed  CAS  Google Scholar 

  • Davis NB, Taber DA, Ansari RH, Ryan CW, George C, Vokes EE, Vogelzang NJ, Stadler WM (2004) Phase II trial of PS-341 in patients with renal cell cancer: a University of Chicago phase II consortium study. J Clin Oncol 22:115–119

    Article  PubMed  CAS  Google Scholar 

  • Desai SD, Liu LF, Vazquez-Abad D, D’Arpa P (1997) Ubiquitin-dependent destruction of topoisomerase I is stimulated by the antitumor drug camptothecin. J Biol Chem 272:24159–24164

    Article  PubMed  CAS  Google Scholar 

  • Dick LR, Cruikshank AA, Destree AT, Grenier L, McCormack TA, Melandri FD, Nunes SL, Palombella VJ, Parent LA, Plamondon L, Stein RL (1997) Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J Biol Chem 272:182–188

    Article  PubMed  CAS  Google Scholar 

  • Diehl JA, Zindy F, Sherr CJ (1997) Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev 11:957–972

    Article  PubMed  CAS  Google Scholar 

  • Dimmeler S, Breitschopf K, Haendeler J, Zeiher AM (1999) Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway. J Exp Med 189:1815–1822

    Article  PubMed  CAS  Google Scholar 

  • Elliott PJ, Zollner TM, Boehncke WH (2003) Proteasome inhibition: a new anti-inflammatory strategy. J Mol Med 81:235–245

    PubMed  CAS  Google Scholar 

  • Fahy BN, Schlieman MG, Virudachalam S, Bold RJ (2003) Schedule-dependent molecular effects of the proteasome inhibitor bortezomib and gemcitabine in pancreatic cancer. J Surg Res 113:88–95

    Article  PubMed  CAS  Google Scholar 

  • Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268:726–731

    Article  PubMed  CAS  Google Scholar 

  • Frankel A, Man S, Elliott P, Adams J, Kerbel RS (2000) Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin Cancer Res 6:3719–3728

    PubMed  CAS  Google Scholar 

  • Goy A, Younes A, McLaughlin P, Pro B, Romaguera JE, Hagemeister F, Fayad L, Dang NH, Samaniego F, Wang M, Broglio K, Samuels B, Gilles F, Sarris AH, Hart S, Trehu E, Schenkein D, Cabanillas F, Rodriguez AM (2005) Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol 23:667–675

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Koguchi Y, Huber R, Kohno J (2001) Crystal structure of the 20 S proteasome: TMC-95A complex: a non-covalent proteasome inhibitor. J Mol Biol 311:543–548

    Article  PubMed  CAS  Google Scholar 

  • Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J, Anderson KC (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61:3071–3076

    PubMed  CAS  Google Scholar 

  • Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V, Adams J, Anderson KC (2002) NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 277:16639–16647

    Article  PubMed  CAS  Google Scholar 

  • Hoffman L, Rechsteiner M (1994) Activation of the multicatalytic protease. The 11 S regulator and 20 S ATPase complexes contain distinct 30-kilodalton subunits. J Biol Chem 269:16890–16895

    PubMed  CAS  Google Scholar 

  • Hough R, Pratt G, Rechsteiner M (1987) Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J Biol Chem 262:8303–8313

    PubMed  CAS  Google Scholar 

  • Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG, Niesvizky R, Alexanian R, Limentani SA, Alsina M, Adams J, Kauffman M, Esseltine DL, Schenkein DP, Anderson KC (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127:165–172

    Article  PubMed  CAS  Google Scholar 

  • Jagannath S, Durie BG, Wolf J, Camacho E, Irwin D, Lutzky J, McKinley M, Gabayan E, Mazumder A, Schenkein D, Crowley J (2005) Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol 129:776–783

    Article  PubMed  CAS  Google Scholar 

  • Jeremias I, Kupatt C, Baumann B, Herr I, Wirth T, Debatin KM (1998) Inhibition of nuclear factor kappaB activation attenuates apoptosis resistance in lymphoid cells. Blood 91:4624–4631

    PubMed  CAS  Google Scholar 

  • Kho CJ, Huggins GS, Endege WO, Hsieh CM, Lee ME, Haber E (1997) Degradation of E2A proteins through a ubiquitin-conjugating enzyme, UbcE2A. J Biol Chem 272:3845–3851

    Article  PubMed  CAS  Google Scholar 

  • Kim TK, Maniatis T (1996) Regulation of interferongamma-activated STAT1 by the ubiquitin-proteasome pathway. Science 273:1717–1719

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa H, Tani E, Ikemoto H, Ozaki I, Nakano A, Omura S (1999) Proteasome inhibitors induce mitochondria-independent apoptosis in human glioma cells. FEBS Lett 443:181–186

    Article  PubMed  CAS  Google Scholar 

  • Kloetzel PM (2001) Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2:179–187

    Article  PubMed  CAS  Google Scholar 

  • Kloetzel PM (2004) Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat Immunol 5:661–669

    Article  PubMed  CAS  Google Scholar 

  • Koc ON, Bahlis NJ, Liu L, Lazarus HM, Cooper BW, Gerson SL, Laughlin MJ, Jacobberger JW, Horvath N, Remick S (2005) A phase I trial of bortezomib in combination with fludarabine in patients with lymphoproliferative neoplasms. J Clin Oncol 23[Suppl 16S]:596s (No. 6647)

    Google Scholar 

  • Kondagunta GV, Drucker B, Schwartz L, Bacik J, Marion S, Russo P, Mazumdar M, Motzer RJ (2004) Phase II trial of bortezomib for patients with advanced renal cell carcinoma. J Clin Oncol 22:3720–3725

    Article  PubMed  CAS  Google Scholar 

  • Kudo Y, Takata T, Ogawa I, Kaneda T, Sato S, Takekoshi T, Zhao M, Miyauchi M, Nikai H (2000) p27Kip1 accumulation by inhibition of proteasome function induces apoptosis in oral squamous cell carcinoma cells. Clin Cancer Res 6:916–923

    PubMed  CAS  Google Scholar 

  • Kumatori A, Tanaka K, Inamura N, Sone S, Ogura T, Matsumoto T, Tachikawa T, Shin S, Ichihara A (1990) Abnormally high expression of proteasomes in human leukemic cells. Proc Natl Acad Sci U S A 87:7071–7075

    Article  PubMed  CAS  Google Scholar 

  • Loidl G, Groll M, Musiol HJ, Huber R, Moroder L (1999) Bivalency as a principle for proteasome inhibition. Proc Natl Acad Sci U S A 96:5418–5422

    Article  PubMed  CAS  Google Scholar 

  • Ma MH, Yang HH, Parker K, Manyak S, Friedman JM, Altamirano C, Wu ZQ, Borad MJ, Frantzen M, Roussos E, Neeser J, Mikail A, Adams J, Sjak-Shie N, Vescio RA, Berenson JR (2003) The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res 9:1136–1144

    PubMed  CAS  Google Scholar 

  • Macherla VR, Mitchell SS, Manam RR, Reed KA, Chao TH, Nicholson B, Deyanat-Yazdi G, Mai B, Jensen PR, Fenical WF, Neuteboom ST, Lam KS, Palladino MA, Potts BC (2005) Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J Med Chem 48:3684–3687

    Article  PubMed  CAS  Google Scholar 

  • Maki CG, Huibregtse JM, Howley PM (1996) In vivo ubiquitination and proteasome-mediated degradation of p53(1). Cancer Res 56:2649–2654

    PubMed  CAS  Google Scholar 

  • Maki RG, Kraft AS, Scheu K, Yamada J, Wadler S, Antonescu CR, Wright JJ, Schwartz GK (2005) A multicenter phase II study of bortezomib in recurrent or metastatic sarcomas. Cancer 103:1431–1438

    Article  PubMed  CAS  Google Scholar 

  • Mitsiades N, Mitsiades CS, Richardson PG, Poulaki V, Tai YT, Chauhan D, Fanourakis G, Gu X, Bailey C, Joseph M, Libermann TA, Schlossman R, Munshi NC, Hideshima T, Anderson KC (2003) The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 101:2377–2380

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Morita K, Ohi N, Arai T, Nozaki N, Kikuchi A, Osaka F, Yamao F, Oda K (1996) Degradation of topoisomerase IIalpha during adenovirus E1A-induced apoptosis is mediated by the activation of the ubiquitin proteolysis system. J Biol Chem 271:24842–24849

    Article  PubMed  CAS  Google Scholar 

  • Naujokat C, Sezer O, Zinke H, Leclere A, Hauptmann S, Possinger K (2000) Proteasome inhibitors induced caspase-dependent apoptosis and accumulation of p21WAF1/Cip1 in human immature leukemic cells. Eur J Haematol 65:221–236

    Article  PubMed  CAS  Google Scholar 

  • Ni H, Ergin M, Huang Q, Qin JZ, Amin HM, Martinez RL, Saeed S, Barton K, Alkan S (2001) Analysis of expression of nuclear factor kappa B (NF-kappa B) in multiple myeloma: downregulation of NF-kappa B induces apoptosis. Br J Haematol 115:279–286

    Article  PubMed  CAS  Google Scholar 

  • O’Connor OA, Wright J, Moskowitz C, Muzzy J, Mac-Gregor-Cortelli B, Stubblefield M, Straus D, Portlock C, Hamlin P, Choi E, Dumetrescu O, Esseltine D, Trehu E, Adams J, Schenkein D, Zelenetz AD (2005) Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol 23:676–68

    Article  PubMed  CAS  Google Scholar 

  • Oakervee HE, Popat R, Curry N, Smith P, Morris C, Drake M, Agrawal S, Stec J, Schenkein D, Esseltine DL, Cavenagh JD (2005) PAD combination therapy (PS-341/bortezomib, doxorubicin and dexamethasone) for previously untreated patients with multiple myeloma. Br J Haematol 129:755–762

    Article  PubMed  CAS  Google Scholar 

  • Orlowski RZ, Stinchcombe TE, Mitchell BS, Shea TC, Baldwin AS, Stahl S, Adams J, Esseltine DL, Elliott PJ, Pien CS, Guerciolini R, Anderson JK, Depcik-Smith ND, Bhagat R, Lehman MJ, Novick SC, O’Connor OA, Soignet SL (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20:4420–4427

    Article  PubMed  CAS  Google Scholar 

  • Orlowski RZ, Voorhees PM, Garcia RA, Hall MD, Kudrik FJ, Allred T, Johri AR, Jones PE, Ivanova A, Van Deventer HW, Gabriel DA, Shea TC, Mitchell BS, Adams J, Esseltine DL, Trehu EG, Green M, Lehman MJ, Natoli S, Collins JM, Lindley CM, Dees EC (2005) Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 105:3058–3065

    Article  PubMed  CAS  Google Scholar 

  • Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682–685

    Article  PubMed  CAS  Google Scholar 

  • Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78:773–785

    Article  PubMed  CAS  Google Scholar 

  • Papandreou CN, Daliani DD, Nix D, Yang H, Madden T, Wang X, Pien CS, Millikan RE, Tu SM, Pagliaro L, Kim J, Adams J, Elliott P, Esseltine D, Petrusich A, Dieringer P, Perez C, Logothetis CJ (2004) Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol 22:2108–2121

    Article  PubMed  CAS  Google Scholar 

  • Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian R, Siegel D, Orlowski RZ, Kuter D, Limentani SA, Lee S, Hideshima T, Esseltine DL, Kauffman M, Adams J, Schenkein DP, Anderson KC (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617

    Article  PubMed  CAS  Google Scholar 

  • Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau JL, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, San-Miguel JF, Blade J, Boccadoro M, Cavenagh J, Dalton WS, Boral AL, Esseltine DL, Porter JB, Schenkein D, Anderson KC (2005) Assessment of Proteasome Inhibition for Extending Remissions (APEX) Investigators. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498

    Article  PubMed  CAS  Google Scholar 

  • Seeger M, Ferrell K, Dubiel W (1997) The 26S proteasome: a dynamic structure. Mol Biol Rep 24:83–88

    Article  PubMed  CAS  Google Scholar 

  • Shah MH, Young D, Kindler HL, Webb I, Kleiber B, Wright J, Grever M (2004) Phase II study of the proteasome inhibitor bortezomib (PS-341) in patients with metastatic neuroendocrine tumors. Clin Cancer Res 10:6111–6118

    Article  PubMed  CAS  Google Scholar 

  • Soligo D, Servida F, Delia D, Fontanella E, Lamorte G, Caneva L, Fumiatti R, Lambertenghi Deliliers G (2001) The apoptogenic response of human myeloid leukaemia cell lines and of normal and malignant haematopoietic progenitor cells to the proteasome inhibitor PSI. Br J Haematol 113:126–135

    Article  PubMed  CAS  Google Scholar 

  • Stancovski I, Gonen H, Orian A, Schwartz AL, Ciechanover A (1995) Degradation of the proto-oncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro: identification and characterization of the conjugating enzymes. Mol Cell Biol 15:7106–7116

    PubMed  CAS  Google Scholar 

  • Stein RL, Melandri F, Dick L (1996) Kinetic characterization of the chymotryptic activity of the 20S proteasome. Biochemistry 35:3899–3908

    Article  PubMed  CAS  Google Scholar 

  • Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca FC, Ruderman JV, Hershko A (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell 6:185–197

    PubMed  CAS  Google Scholar 

  • Sunwoo JB, Chen Z, Dong G, Yeh N, Crowl Bancroft C, Sausville E, Adams J, Elliott P, Van Waes C (2001) Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res 7:1419–1428

    PubMed  CAS  Google Scholar 

  • Tanaka K, Yoshimura T, Kumatori A, Ichihara A, Ikai A, Nishigai M, Kameyama K, Takagi T (1988) Proteasomes (multi-protease complexes) as 20 S ringshaped particles in a variety of eukaryotic cells. J Biol Chem 263:16209–16217

    PubMed  CAS  Google Scholar 

  • Teicher BA, Ara G, Herbst R, Palombella VJ, Adams J (1999) The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 5:2638–2645

    PubMed  CAS  Google Scholar 

  • Thullberg M, Bartek J, Lukas J (2000) Ubiquitin/proteasome-mediated degradation of p19INK4d determines its periodic expression during the cell cycle. Oncogene 19:2870–2876

    Article  PubMed  CAS  Google Scholar 

  • Traenckner EB, Wilk S, Baeuerle PA (1994) A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. EMBO J 13:5433–5441

    PubMed  CAS  Google Scholar 

  • Urano T, Yashiroda H, Muraoka M, Tanaka K, Hosoi T, Inoue S, Ouchi Y, Toyoshima H (1999) p57(Kip2) is degraded through the proteasome in osteoblasts stimulated to proliferation by transforming growth factor beta1. J Biol Chem 274:12197–12200

    Article  PubMed  CAS  Google Scholar 

  • Voortman J, Smit E, Kuenen B, Pinedo H, van Groeningen C, van den Eertwegh A, Brouwer D, van de Velde H, Giaccone G (2005) A phase 1B, open-label, dose-escalation study of bortezomib in combination with gemcitabine (Gem) and cisplatin (Cis) in the first-line treatment of patients with advanced solid tumors: preliminary results of a phase IB study. J Clin Oncol 23[Suppl 16S]:160s (No. 2103)

    Google Scholar 

  • Walz J, Erdmann A, Kania M, Typke D, Koster AJ, Baumeister W (1998) 26S proteasome structure revealed by three-dimensional electron microscopy. J Struct Biol 121:19–29

    Article  PubMed  CAS  Google Scholar 

  • Wang CY, Mayo MW, Baldwin AS Jr (1996) TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 274:784–787

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Sugahara K, Tsuruda K, Nohda K, Mori N, Hata T, Maeda T, Hayashibara T, Joh T, Honda M, Tawara M, Tomonaga M, Miyazaki Y, Kamihira S (2000) Lactacystin activates FLICE (caspase 8) protease and induces apoptosis in Fas-resistant adult T-cell leukemia cell lines. Eur J Haematol 64:315–322

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD (2000) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288:874–877

    Article  PubMed  CAS  Google Scholar 

  • Zavrski I, Naujokat C, Niemoller K, Jakob C, Heider U, Langelotz C, Fleissner C, Eucker J, Possinger K, Sezer O (2003) Proteasome inhibitors induce growth inhibition and apoptosis in myeloma cell lines and in human bone marrow myeloma cells irrespective of chromosome 13 deletion. J Cancer Res Clin Oncol 129:383–391

    Article  PubMed  CAS  Google Scholar 

  • Zavrski I, Krebbel H, Wildemann B, Heider U, Kaiser M, Possinger K, Sezer O (2005) Proteasome inhibitors abrogate osteoclast differentiation and osteoclast function. Biochem Biophys Res Commun 333:200–205

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wang Z, Liu DX, Pagano M, Ravid K (1998) Ubiquitin-dependent degradation of cyclin B is accelerated in polyploid megakaryocytes. J Biol Chem 273:1387–1392

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zavrski, I., Jakob, C., Kaiser, M., Fleissner, C., Heider, U., Sezer, O. (2007). Molecular and Clinical Aspects of Proteasome Inhibition in the Treatment of Cancer. In: Dietel, M. (eds) Targeted Therapies in Cancer. Recent Results in Cancer Research, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46091-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46091-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46090-9

  • Online ISBN: 978-3-540-46091-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics