Skip to main content

The Differentiation of Germ and Somatic Cell Lines in Nematodes

  • Chapter
Germ Line — Soma Differentiation

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 13))

Abstract

The segregation and differentiation of the germ and somatic cell lines in animal embryos represent one of the basic events in cell and developmental biology and has attracted classical and contemporary researchers alike. The process of germ line-soma segregation singles out cells which have to maintain the genealogy and those which build up the individual organism. This event often constitutes the first sign of differentiation in early cleavage stages of a developing embryo. Understanding, in molecular-genetic terms, such a basic developmental process might give us some clues to solve the most important problem in developmental biology, i.e., how cells become different during development. Although this review will focus on a discussion of germ line versus soma differentiation, it should be emphasized that the underlying mechanism(s) involved in the differentiation of the divergent somatic cell lines may in principle be similar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeby P (1979) Determination du nombre de gènes codant pour l’ARN de transfert dans les lignées germinale et somatique de l’Ascaris lumbricoides (var. suum). Dipl thesis, Univ Freiburg, Switzerland

    Google Scholar 

  • Akifjew AP (1974) Silent DNA and its role in evolution (Russ.) Priroda 9: 49–54

    Google Scholar 

  • Albertson DG, Nwaorgu OC, Sulston JE (1979) Chromatin diminution and a chromosomal mechanism of sexual differentiation in Strongyloides papillosus. Chromosoma 75: 75–87

    Article  PubMed  CAS  Google Scholar 

  • Ammermann D (1965) Cytologische und genetische Untersuchungen an dem Ciliaten Stylonychia mytilus Ehrenberg. Arch Protistenkd 108: 109–152

    Google Scholar 

  • Ammermann D (1967) Die Cytologie der Parthenogenese bei dem Tardigraden Hypsibius dujardini. Chromosoma 23: 203–213

    Article  PubMed  CAS  Google Scholar 

  • Ammermann D (1971) Morphology and development of the macronuclei of the ciliates Stylonychia mytilus and Euplotes aediculatus. Chromosoma 33: 209–238

    Article  PubMed  CAS  Google Scholar 

  • Ammermann D (1986) Chromatin diminution and chromosome elimination: Mechanisms and adaptive significance. In: Cavalier-Smith T (ed) DNA and evolution: Natural selection and genome size. Wiley, New York, in press

    Google Scholar 

  • Ammermann D, Steinbrück G (1981) Methylated bases in the DNA of the ciliate Stylonychia mytilus. Eur J Cell Biol 24: 154–156

    PubMed  CAS  Google Scholar 

  • Andersen HA (1972) Induced elimination of DNA from macronucleus of Tetrahymena pyriformis. Exp Cell Res 74: 610–613

    Article  PubMed  CAS  Google Scholar 

  • Anya AO (1976) Physiological aspects of reproduction in nematodes. In: Dawes B (ed) Advances in parasitology, vol 14. Academic Press, London New York, pp 267–351

    Google Scholar 

  • Back E, Müller F, Tobler H (1984a) Structural organization of the two main rDNA size classes of Ascaris lumbricoides. Nucleic Acids Res 12: 1313–1332

    Article  PubMed  CAS  Google Scholar 

  • Back E, Felder H, Müller F, Tobler H (1984b) Chromosomal arrangement of the two main rDNA size classes of Ascaris lumbricoides. Nucleic Acids Res 12: 1333–1347

    Article  PubMed  CAS  Google Scholar 

  • Back E, Van Meir E, Müller F, Schaller D, Neuhaus H, Aeby P, Tobler H (1984c) Intervening sequences in the ribosomal RNA genes of Ascaris lumbricoides: DNA sequences at junctions and genomic organization. EMBO J 3: 2523–2529

    Google Scholar 

  • Baltzer F (1962) Theodor Boveri. Wiss Verlagsges MBH, Stuttgart, pp 1–194

    Google Scholar 

  • Banerjee MR (1959) Chromosome elimination during meiosis in the males of Macroceroea (Lohita) grandis (Gray) (Pyrrhocoridae, Heteroptera). Proc Zool Soc (Calcutta) 12: 1–8

    Google Scholar 

  • Bantock CR (1961) Chromosome elimination in cecidomyidae. Nature (London) 190: 466–467

    Article  Google Scholar 

  • Bantock CR (1970) Experiments on chromosome elimination in the gall midge, Mayetiola destructor. J Embryol Exp Morphol 24: 257–286

    PubMed  CAS  Google Scholar 

  • Basile R (1966) Estudo da espermatogênese e da ovogênes em Rhynchosciara angelae e da sintese de âcidos nucléicos e de proteinas no ovârio. PhD thesis, Univ Sao Paulo, Sao Paulo

    Google Scholar 

  • Bauer H (1932) Die Feulgensche Nuklealfärbung in ihrer Anwendung auf cytologische Untersuchungen. Z Zellforsch 15: 225–247

    Article  Google Scholar 

  • Bauer H (1933) Die wachsenden Oocytenkerne einiger Insekten in ihrem Verhalten zur Nuklealfärbung. Z Zellforsch 18: 254–298

    Article  Google Scholar 

  • Bauer H, Beermann W (1952a) Chromosomale Soma-Keimbahn-Differenzierung bei Chironomiden. Naturwissenschaften 39: 22–23

    Article  Google Scholar 

  • Bauer H, Beermann W (1952b) Der Chromosomencyclus der Orthocladiinen ( Nematocerca, Diptera). Z Naturforsch 7b: 557–563

    Google Scholar 

  • Beams HW, Kessel RG (1974) The problem of germ cell determinants. In: Boume GH, Danielli JF, Jeon KW (eds) Int Rev Cytol Academic Press, London New York, pp 418–479

    Google Scholar 

  • Beauchamp RS, Pasternak J, Straus NA (1979) Characterization of the genome of the free-living nematode Panagrellus silusiae: Absence of short period interspersion. Biochemistry 18: 245–251

    Google Scholar 

  • Beermann S (1959) Chromatin-Diminution bei Copepoden. Chromosoma 10: 504–514

    Article  PubMed  CAS  Google Scholar 

  • Beermann S (1977) The diminution of heterochromatic chromosomal segments in Cyclops (Crustacea, Copepoda). Chromosoma 60: 297–344

    Article  PubMed  CAS  Google Scholar 

  • Beermann S (1984) Circular and linear structures in chromatin diminution of Cyclops. Chromo-soma 89: 321–328

    Article  Google Scholar 

  • Beermann S, Meyer GF (1980) Chromatin rings as products of chromatin diminution in Cyclops. Chromosoma 77: 277–283

    Article  PubMed  CAS  Google Scholar 

  • Beermann W (1952) Chromomerenkonstanz und spezifische Modifikationen der Chromosomenstruktur in der Entwicklung und Organdifferenzierung von Chironomus tentans. Chromosoma 5: 139–198

    Article  Google Scholar 

  • Beermann W (1972) Chromomeres and genes. In: Beermann W (ed) Developmental studies on giant chromosomes. Results and problems in cell differentiation, vol IV. Springer, Berlin Heidelberg New York, pp 1–33

    Google Scholar 

  • Beneden E (1983) Recherches sur la maturation de l’oeuf et la fécondation. Arch Biol 4: 265–641

    Google Scholar 

  • Bennett FD, Brown SW (1958) Life history and sex determination in the diaspine scale, Pseudaulacaspis pentagona (Targ.) ( Coccoidea ). Can Entomol 90: 317–324

    Google Scholar 

  • Bielka H, Schultz I, Böttger M (1968) Isolation and properties of DNA from eggs and gastrulae of Ascaris lumbricoides. Biochim Biophys Acta 157: 209–212

    Article  PubMed  CAS  Google Scholar 

  • Biocca E, Nascetti G, lori A, Costantini R, Bullini L (1978) Descrizione di Parascaris univalens, parassita degli equini, e suo differenziamento da Parascaris equorum. Atti Accad Naz Lincei Cl Sci Fis Mat Nat Rend 65: 133–141

    Google Scholar 

  • Blackler AW (1958) Contribution to the study of germ-cells in the anura. J Embryol Exp Morphol 6: 491–503

    PubMed  CAS  Google Scholar 

  • Bonnevie K (1902) Über Chromatindiminution bei Nematoden. Jena Z Naturwiss 36: 275–288

    Google Scholar 

  • Bostock C (1980) A function for satellie DNA? TIBS 5: 117–119

    CAS  Google Scholar 

  • Bounoure L (1939) L’origine des cellules reproductrices et le problème de la lignée germinale. Gauthier-Villars, Paris

    Google Scholar 

  • Boveri T (1887) Über Differenzierung der Zellkerne während der Furchung des Eies von Ascaris megalocephala. Anat Anz 2: 688–693

    Google Scholar 

  • Boveri T (1888) Zellenstudien II. Die Befruchtung und Teilung des Eies von Ascaris megalocephala. Jena Z Naturwiss 22: 685–882

    Google Scholar 

  • Boveri T (1892) Über die Entstehung des Gegensatzes zwischen den Geschlechtszellen und den somatischen Zellen bei Ascaris megalocephala, nebst Bemerkungen zur Entwicklungsgeschichte der Nematoden. Sitzungsber Ges Morphol Physiol München 8: 114–125

    Google Scholar 

  • Boveri T (1899) Die Entwicklung von Ascaris megalocephala mit besonderer Rücksicht auf die Kernverhältnisse. In: Festschrift für C von Kupffer. Fischer, Jena, pp 383–430

    Book  Google Scholar 

  • Boveri T (1904) Ergebnisse über die Konstitution der chromatischen Substanz des Zellkerns. Jena, Fischer, pp 1–130

    Book  Google Scholar 

  • Boveri T (1910a) Über die Teilung centrifugierter Eier von Ascaris megalocephala. Arch Entwicklungsmech Org 30: 101–125

    Article  Google Scholar 

  • Boveri T (1910b) Die Potenzen der Ascaris-Blastomeren bei abgeänderter Furchung. Zugleich ein Beitrag zur Frage qualitativ-ungleicher Chromosomen-Teilung. Festschr für R. Hertwig, vol III. Fischer, Jena, pp 131–214

    Google Scholar 

  • Britten RJ, Kohne DE (1966) Nucleotide sequence repetition in DNA. Carnegie Inst Washington Yearb 65: 78–106

    Google Scholar 

  • Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Science 161: 529–540

    Article  PubMed  CAS  Google Scholar 

  • Brown DD (1984) The role of stable complexes that repress and activate cucaryotic genes. Cell 37: 359–365

    Article  PubMed  CAS  Google Scholar 

  • Brown DD, Dawid IB (1968) Specific gene amplification in oocytes. Science 160: 272–280

    Article  PubMed  CAS  Google Scholar 

  • Brown SW, Bennett FD (1957) On sex determination in the diaspine scale Pseudaulacaspis pentagona (Targ.) ( Coccoidea ). Genetics 42: 510–523

    Google Scholar 

  • Brown SW, Chandra HS (1977) Chromosome imprinting and the differential regulation of homologous chromosomes. In: Goldstein L, Prescott DM (eds) Cell biology: A comprehensive treatise, vol I. Genetic mechanisms of cells. Academic Press, London New York, pp 109–189

    Google Scholar 

  • Bueding E, Orrell SA (1964) A mild procedure for the isolation of polydisperse glycogen from animal tissues. J Biol Chem 239: 4018–4020

    PubMed  CAS  Google Scholar 

  • Bullini L, Nascetti G, Ciafrè S, Rumore F, Biocca E (1978) Ricerche cariologiche ed elettroforetiche su Parascaris univalens e Parascaris equorum. Atti Accad Naz Lincei Cl Sci Fis Mat Nat Rend 65: 151–159

    CAS  Google Scholar 

  • Camenzind R (1971) The cytology of paedogenesis in the gall midge Mycophila speyeri. Chromosoma 35: 393–402

    Article  PubMed  CAS  Google Scholar 

  • Cameron JR, Loh EY, Davis RW (1979) Evidence for transposition of dispersed repetitive DNA families in yeast. Cell 16: 739–751

    Article  PubMed  CAS  Google Scholar 

  • Carter CE, Wells JR, Maclnnis AJ (1972) DNA from anaerobic adult Ascaris lumbricoides and Hymenolepis diminuta mitochondria isolated by zonal centrifugation. Biochim Biophys Acta 262: 135–144

    Article  PubMed  CAS  Google Scholar 

  • Chitwood BG, Chitwood MB (1950) An introduction to nematology. Baltimore Monumental Printing, Baltimore, pp 1–213

    Google Scholar 

  • Close RL (1984) Rates of sex chromosome loss during development in different tissues of the bandicoots Perameles nasuta and Isoodon macrourus (Marsupialia: Peramelidae). Aust J Biol Sci 37: 53–61

    Google Scholar 

  • Cooper DN (1983) Eukaryotic DNA methylation. Hum Genet 64: 315–333

    Article  PubMed  CAS  Google Scholar 

  • Cooper KW (1939) The nuclear cytology of the grass mite, Pediculopsis graminum (Reut.), with special reference to karyomerokinesis. Chromosoma 1: 51–103

    Article  Google Scholar 

  • Croce CM, Kieba I, Koprowski H (1973) Unidirectional loss of human chromosomes in rat-human hybrids. Exp Cell Res 79: 461–463

    Article  PubMed  CAS  Google Scholar 

  • Crouse HV, Brown A, Mumford BC (1971) L-chromosome inheritance and the problem of chromosome “imprinting” in Sciara ( Sciaridae, Diptera). Chromosoma 34: 324–339

    Google Scholar 

  • Dale PJ (1983) Protoplast culture and plant regeneration of cereals and other recalcitrant crops. Experientia Suppl 46: 31–41

    Google Scholar 

  • Darlington CD (1956) Chromosome Botany. Allen and Unwin, London, pp 1–186

    Google Scholar 

  • Davey MR (1983) Recent developments in the culture and regeneration of plant protoplasts. Experientia Suppl 46: 19–29

    CAS  Google Scholar 

  • Davidson EH (1976) Gene activity in early development, 2nd edn. Academic Press, London New York, pp 1–452

    Google Scholar 

  • Davidson EH, Hough BR, Amenson CS, Britten RJ (1973) General interspersion of repetitive with non-repetitive sequence elements in the DNA of Xenopus. J Mol Biol 77: 1–23

    Article  PubMed  CAS  Google Scholar 

  • Davis AH, Kidd GH, Carter CE (1979) Chromosome diminution in Ascaris suum. Two-fold increase of nucleosomal histone to DNA ratios during development. Biochim Biophys Acta 565: 315–325

    Google Scholar 

  • Dawson D, Buckley B, Cartinhour S, Myers R, Herrick G (1984) Elimination of germ-line tandemly repeated sequences from the somatic genome of the ciliate Oxytricha fallax. Chromo-soma 90: 289–294

    Article  CAS  Google Scholar 

  • DiBerardino MA, Hoffner YN, Etkin LD (1984) Activation of dormant genes in specialized cells. Science 224: 946–952

    Article  PubMed  CAS  Google Scholar 

  • Dixon KE (1981) The origin of the primordial germ cells in the amphibia. Neth J Zool 31: 5–37

    Article  Google Scholar 

  • Doerfler W (1983) DNA methylation and gene activity. Annu Rev Biochem 52: 93–124

    Article  PubMed  CAS  Google Scholar 

  • DuBois AM (1932) Elimination of chromosomes during cleavage in the eggs of Sciara (Diptera). Proc Natl Acad Sci USA 18: 352–356

    Article  PubMed  CAS  Google Scholar 

  • DuBois AM (1933) Chromosome behavior during cleavage in the eggs of Sciara coprophila (Diptera) in the relation to the problem of sex determination. Z Zellforsch 19: 595–614

    Article  Google Scholar 

  • Eddy EM (1975) Germ plasm and the differentiation of the germ cell line. In: Boume GH, Danielli JF, Jeon KW (eds) International review of cytology. Academic Press, London New York, pp 229–280

    Google Scholar 

  • Eddy EM, Clark JM, Gong D, Fenderson BA (1981) Review article: Origin and migration of primordial germ cells in mammals. Gamete Res 4: 333–362

    Google Scholar 

  • Edwards CL (1910a) The sex-determining chromosomes in Ascaris. Science 31: 514–515

    Article  PubMed  CAS  Google Scholar 

  • Edwards CL (1910b) The idiochromosomes in Ascaris megalocephala and Ascaris lumbricoides. Arch Zellforsch 5: 422–429

    Google Scholar 

  • Einsle U (1964) Die Gattung Cyclops s. str. im Bodensee. Arch Hydrobiol 60: 133–199

    Google Scholar 

  • Emmons SW, Yesner L (1984) High-frequency excision of transposable element Tel in the nematode Caenorhabditis elegans is limited to somatic cells. Cell 36: 599–605

    Article  PubMed  CAS  Google Scholar 

  • Emmons SW, Klass MR, Hirsh D (1979) Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 76: 1333–1337

    Article  PubMed  CAS  Google Scholar 

  • Emmons SW, Rosenzweig B, Hirsh D (1980) Arrangement of repeated sequences in the DNA of the nematode Caenorhabditis elegans. J Mol Biol 144: 481–500

    Article  PubMed  CAS  Google Scholar 

  • Emmons SW, Yesner L, Ruan K, Katzenberg D (1983) Evidence for a transposon in Caenorhabditis elegans. Cell 32: 55–65

    Article  PubMed  CAS  Google Scholar 

  • Endow SA, Gall JG (1975) Differential replication of satellite DNA in polyploid tissues of Drosophila virilis. Chromosoma 50: 175–192

    Article  PubMed  CAS  Google Scholar 

  • Evans D, Birnstiel ML (1968) Localization of amplified ribosomal DNA in the oocyte of Xenopus laevis. Biochim Biophys Acta 166: 274–276

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff NV (1984) Transposable genetic elements in maize. Sci Am 250, 6: 64–74

    Article  Google Scholar 

  • Felder H (1983) Lokalisierung von hochrepetitiven DNA-Sequenzen und ribosomalen Genen auf Chromosomen von Ascaris lumbricoides var. suum mittels in situ-Hybridisierungsexperimenten. Dipl thesis, Univ Freiburg, Switzerland, pp 1–54

    Google Scholar 

  • Finch RA (1983) Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma 88: 386–393

    Article  Google Scholar 

  • Finnegan DJ, Rubin GM, Young MW, Hogness DS (1978) Repeated gene families in Drosophila melanogaster. Cold Spring Harbor Symp Quant Biol 42: 1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Fogg LC (1930) A study of chromatin diminution in Ascaris and Ephestia. J Morphol 50: 413

    Article  Google Scholar 

  • Fux T (1974) Chromosome elimination in Heteropeza pygmaea. II. Ultrastructure of the spindle apparatus. Chromosoma 49: 99–112

    Article  PubMed  CAS  Google Scholar 

  • Gall JG (1968) Differential synthesis of the genes for ribosomal RNA during amphibian oögenesis. Proc Natl Acad Sci USA 60: 553–560

    Article  PubMed  CAS  Google Scholar 

  • Gall JG (1981) Chromosome structure and the C-value paradox. J Cell Biol 91: 3s-14s

    Article  PubMed  CAS  Google Scholar 

  • Gartler SM, Riggs AD (1983) Mammalian X-chromosome inactivation. Annu Rev Genet 17: 155–190

    Article  PubMed  CAS  Google Scholar 

  • Geigy R (1931) Action de l’ultra-violet sur le pôle germinal dans l’oeuf de Drosophila melanogaster (Castration et mutabilité). Rev Suisse Zool 38: 187–288

    Google Scholar 

  • Gerbi S (1986) Chromosome mechanics in Sciarids (this Vol)

    Google Scholar 

  • Gerhart JC (1980) Mechanisms regulating pattern formation in the amphibian egg and early embryo. In: Goldberger RF (ed) Biological regulation and development, vol II. Plenum Press, New York, pp 133–316

    Chapter  Google Scholar 

  • Geyer-Duszynska I (1959) Experimental research on chromosome elimination in Cecidomyidae (Diptera). J Exp Zool 141: 391–447

    Article  PubMed  CAS  Google Scholar 

  • Geyer-Duszynska I (1966) Genetic factors in oögenesis and spermatogenesis in Cecidomyiidae. In: Darlington CD, Lewis KR (eds) Chromosomes today, vol I. Oliver and Boyd, Edinburgh, pp 174–178

    Google Scholar 

  • Goday C, Pimpinelli S (1984) Chromosome organization and heterochromatin elimination in Parascaris. Science 224: 411–413

    Article  PubMed  CAS  Google Scholar 

  • Goday C, Ciofi-Luzzatto A, Pimpinelli S (1985) Centromere ultrastructure in germ-line chromosomes of Parascaris. Chromosoma 91: 121–125

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt RB, Lin TP (1947) Chromatin diminution in Ascaris. Science 105: 619

    Article  Google Scholar 

  • Goldstein P (1977) Chromatin diminution in early embryogenesis of Ascaris lumbricoides L. var. suum. J Morphol 152: 141–151

    Article  PubMed  CAS  Google Scholar 

  • Goldstein P (1978) Ultrastructural analysis of sex determination in Ascaris lumbricoides var. suum. Chromosoma 66: 59–69

    Article  Google Scholar 

  • Goldstein P, Moens PB (1976) Karyotype analysis of Ascaris lumbricoides var. suum. Male and female pachytene nuclei by 3-D reconstruction from electron microscopy of serial sections. Chromosoma 58: 101–111

    Article  PubMed  CAS  Google Scholar 

  • Goldstein P, Straus NA (1978) Molecular characterization of Ascaris suum DNA and of chromatin diminution. Exp Cell Res 116: 462–466

    Article  PubMed  CAS  Google Scholar 

  • Goodrich HB (1916) The germ cells in Ascaris incurva. J Exp Zool 21: 61–99

    Article  Google Scholar 

  • Goswami U (1973) Chromatin elimination in a rare species of nematode Physaloptera indiana. Curr Sci 42: 576–577

    Google Scholar 

  • Grimm C, Kunz W (1980) Disproportionate rDNA replication does occur in diploid tissue in Drosophila hydei. Mol Gen Genet 180: 23–26

    Article  PubMed  CAS  Google Scholar 

  • Grimm C, Kunz W, Franz G (1984) The organ-specific rRNA gene number in Drosophila hydei is controlled by sex heterochromatin. Chromosoma 89: 48–54

    Article  CAS  Google Scholar 

  • Gurdon JB (1974) The control of gene expression in animal development. Clarendon Press, Oxford, pp 1–160

    Google Scholar 

  • Gurdon JB, Uehlinger V (1966) “Fertile” intestine nuclei. Nature (London) 210:1240–1241

    Google Scholar 

  • Gurdon JB, Laskey RA, Reeves OR (1975) The developmental capacity of nuclei transplanted from keratinized skin cells of adult frogs. J Embryol Exp Morphol 34: 93–112

    PubMed  CAS  Google Scholar 

  • Hadorn E (1965) Problems of determination and transdetermination. In: Genetic control of differentiation. Brookhaven Natl Lab New York 18: 148–159

    Google Scholar 

  • Hadorn E (1978) Transdetermination. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol II c. Academic Press, London New York, pp 555–617

    Google Scholar 

  • Hatt P (1931) La fusion expérimentale d’oeufs de „Sabellaria alveolata L.“ et leur développement. Arch Biol 42: 303–323

    Google Scholar 

  • Hayman DL, Martin PG (1965) Sex chromosome mosaicism in the marsupial genera Isoodon and Perameles. Genetics 52: 1201–1206

    PubMed  CAS  Google Scholar 

  • Hayman DL, Martin PG (1969) Cytogenetics of marsupials. In: Benirschke K (ed) Comparative mammalian cytogenetics. Springer, Berlin Heidelberg New York, pp 191–217

    Chapter  Google Scholar 

  • Hegner RW (1911) Germ-cell determinants and their significance. Am Nat 45: 385–397

    Article  Google Scholar 

  • Hegner RW (1914) Studies on germ cells. J Morpho! 25: 375–509

    Article  Google Scholar 

  • Hennig W (1986) Heterochromatin and germ line limited DNA (this Vol)

    Google Scholar 

  • Hennig W, Meer B (1971) Reduced polyteny of ribosomal RNA cistrons in giant chromosomes of Drosophila hydei. Nature (London) New Biol 233: 70–72

    CAS  Google Scholar 

  • Herla V (1893) Etude des variations de la mitose chez l’Ascaride mégalocéphale. Arch Biol 13: 423–520

    Google Scholar 

  • Hertwig R (1903) Über Korrelation von Zell-und Kerngröße und ihre Bedeutung für die geschlechtliche Differenzierung und die Teilung der Zelle. Biol Centralbl 23: 49–62.

    Google Scholar 

  • Hillman N, Sherman MI, Graham C (1972) The effect of spatial arrangement on cell determination during mouse development. J Embryol Exp Morphol 28: 263–278

    PubMed  CAS  Google Scholar 

  • Hilscher W (1983) Problems of the Keimbahn. In: Hilscher W (ed) Problems of the Keimbahn, new work on mammalian germ cell lineage. Karger, Basel, pp 1–21

    Google Scholar 

  • Hogue MJ (1910) Über die Wirkung der Centrifugalkraft auf die Eier von Ascaris megalocephala. Arch Entwicklungsmech Org 29: 109–145

    Article  Google Scholar 

  • Huettner AF (1934) Octoploidy and diploidy in Miastor americana. Anat Rec 60 (Suppl): 80

    Google Scholar 

  • Illmensee K, Mahowald AP (1974) Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc Natl Acad Sci USA 71: 1016–1020

    Google Scholar 

  • Illmensee K, Mahowald AP (1976) The autonomous function of germ plasm in a somatic region of the Drosophila egg. Exp Cell Res 97: 127–140

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R, Jähner D (1984) Methylation, expression and chromosomal position of genes in mammals. Biochim Biophys Acta 782: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Jelinek WR, Schmid CW (1982) Repetitive sequences in eukaryotic DNA and their expression. Annu Rev Biochem 51: 813–844

    Article  PubMed  CAS  Google Scholar 

  • Ju-Chi-Li (1937) A six-chromosome Ascaris in Chinese horses. Science 86: 101–102

    Google Scholar 

  • Judd BH, Shen MW, Kaufman TC (1972) The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics 71: 139–156

    PubMed  CAS  Google Scholar 

  • Kahle W (1908) Die Paedogenesis der Cecidomyiden. Zoologica 21: 1–80

    Google Scholar 

  • Kaput J, Sneider TW (1979) Methylation of somatic vs germ cell DNAs analyzed by restriction endonuclease digestions. Nucleic Acids Res 7: 2303–2322

    Article  PubMed  CAS  Google Scholar 

  • Kaulenas MS, Fairbairn D (1968) RNA metabolism of fertilized Ascaris lumbricoides eggs during uterine development. Exp Cell Res 52: 233–251

    Article  PubMed  CAS  Google Scholar 

  • Kautzsch G (1913) Studien über Entwicklungsanomalien bei Ascaris. II. Arch Entwicklungsmech Org 35: 642–691

    Article  Google Scholar 

  • Kilejian A, Maclnnis AJ (1976) Density distribution of DNA from parasitic helminths with special reference to Ascaris lumbricoides. Rice Univ Stud 62: 161–174

    Google Scholar 

  • Kimble J, Hirsh D (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70: 396–417

    Article  PubMed  CAS  Google Scholar 

  • King RL, Beams HW (1937) Effect of ultra-centrifuging on the egg of Ascaris megalocephala. Nature (London) 139: 369–370

    Article  Google Scholar 

  • King RL, Beams HW (1938) An experimental study of chromatin diminution in Ascaris. J Exp Zool 77: 425–443

    Article  Google Scholar 

  • Klingstedt H (1931) Digametie beim Weibchen der Trichoptere Limnophilus decipiens (Kol). Acta Zool Fenn 10: 1–69

    Google Scholar 

  • Kovaleva VG, Raikov I B (1978) Diminution and re-synthesis of DNA during development and senescence of the “diploid” macronuclei of the ciliate Trachelonema sulcata ( Gymnostomata, Karyorelictida). Chromosoma 67: 177–192

    Google Scholar 

  • Krieg C, Cole T, Deppe U, Schierenberg E, Schmitt D, Yoder B, von Ehrenstein G (1978) The cellular anatomy of embryos of the nematode Caenorhabditis elegans. Dev Biol 65: 193–215

    Article  PubMed  CAS  Google Scholar 

  • Krüger E (1913) Fortpflanzung und Keimzellenbildung von Rhabditis aberrans, nov sp. Z Wiss Zool 105: 87–124

    Google Scholar 

  • Kühn A (1971) Lectures on developmental physiology, 2nd edn. Springer, Berlin Heidelberg New York, pp 1–535

    Book  Google Scholar 

  • Kuhn O, Tobler H (1978) Quantitative analysis of RNA, glycogen and nucleotides from different developmental stages of Ascaris lumbricoides (var. suum). Biochim Biophys Acta 521: 251–266

    Article  PubMed  CAS  Google Scholar 

  • Kunz W (1970) Genetische Aktivität der Keimbahnchromosomen während des Eiwachstums von Gallmücken (Cecidomyiidae). Verh Dtsch Zool Ges 1970: 42–46

    Google Scholar 

  • Kunz W, Schäfer U (1976) Variations in the number of the Y chromosomal rRNA genes in Drosophila hydei. Genetics 82: 25–34

    PubMed  CAS  Google Scholar 

  • Kunz W, Trepte HH, Bier K (1970) On the function of the germ line chromosomes in the oogenesis of Wachtliella persicariae ( Cecidomyiidae ). Chromosoma 30: 180–192

    Google Scholar 

  • Landolt P, Tobler H (1980) The somatic DNA of Ascaris lumbricoides shows short-period interspersion. Experientia 36: 750

    Google Scholar 

  • Laskey RA, Gurdon JB (1970) Genetic content of adult somatic cells tested by nuclear transplantation from cultured cells. Nature (London) 228: 1332–1334

    Article  CAS  Google Scholar 

  • Laufer JS, Ehrenstein G von (1981) Nematode development after removal of egg cytoplasm: Absence of localized unbound determinants. Science 211: 402–405

    Google Scholar 

  • Laufer JS, Bazzicalupo P, Wood WB (1980) Segregation of developmental potential in early embryos of Caenorhabditis elegans. Cell 19: 569–577

    Article  PubMed  CAS  Google Scholar 

  • Lauth MR, Spear BB, Heumann J, Prescott DM (1976) DNA of ciliated protozoa: DNA sequence diminution during macronuclear development of Oxytricha. Cell 7: 67–74

    Article  PubMed  CAS  Google Scholar 

  • Levine M, Garen A, Lepesant JA, Lepesant-Kejzlarova J (1981) Constancy of somatic DNA organization in developmentally regulated regions of the Drosophila genome. Proc Natl Acad Sci USA 78: 2417–2421

    Article  PubMed  CAS  Google Scholar 

  • Lewin R (1982) Repeated DNA still in search of a function. Science 217: 621–623

    Article  PubMed  CAS  Google Scholar 

  • Liao LW, Rosenzweig B, Hirsh D (1983) Analysis of a transposable element in Caenorhabditis elegans. Proc Natl Acad Sci USA 80: 3585–3589

    Article  PubMed  CAS  Google Scholar 

  • Lima-de-Faria A (1975) The relation between chromomeres, replicons, operons, transcription units, genes, viruses and palindromes. Hereditas 81: 249–284

    Article  PubMed  CAS  Google Scholar 

  • Lima-de-Faria A (1983) Molecular evolution and organization of the chromosome. Elsevier, Amsterdam, pp 1–1186

    Google Scholar 

  • Lin TP (1954) The chromosomal cycle in Parascaris equorum (Ascaris megalocephala): Oogenesis and diminution. Chromosoma 6: 175–198

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Freund R, Schweber M, Wensink PC, Meselson M (1978) Sequence organization and transcription at two heat shock loci in Drosophila. Proc Natl Acad Sci USA 75: 5613–5617

    Article  PubMed  CAS  Google Scholar 

  • Mahowald AP (1968) Polar granules of Drosophila. II. Ultrastructural changes during early embryogenesis. J Exp Zool 167: 237–262

    Article  PubMed  CAS  Google Scholar 

  • Mahowald AP (1971a) Polar granules of Drosophila. IV. Cytochemical studies showing loss of RNA from polar granules during early stages of embryogenesis. J Exp Zool 176: 345–352

    Article  PubMed  CAS  Google Scholar 

  • Mahowald AP (1971b) Origin and continuity of polar granules. In: Reinert J, Ursprung H (eds) Results and problems in cell differentiation, vol II. Origin and continuity of cell organelles. Springer, Berlin Heidelberg New York, pp 158–169

    Google Scholar 

  • Mahowald AP, Allis CD, Karrer KM, Underwood EM, Waring GL (1979) Germ plasm and pole cells of Drosophila. In: Subtelny S, Konigsberg IR (eds) Determinants of spatial organization. Academic Press, London New York, pp 127–146

    Google Scholar 

  • Mangold O (1923) Transplantationsversuche zur Frage der Spezifität and der Bildung der Keimblätter bei Triton. Arch Mikrosk Anat Entwicklungsmech 100: 198–301

    Article  Google Scholar 

  • Mangold O, Seidel F (1927) Homoplastische and heteroplastische Verschmelzung ganzer Triton-keime. Wilhelm Roux ’ Arch Entwicklungsmech Org 111: 593–665

    Article  Google Scholar 

  • Markert CL, Petters RM (1978) Manufactured hexaparental mice show that adults are derived from three embryonic cells. Science 202: 56–58

    Article  PubMed  CAS  Google Scholar 

  • Martin GR (1982) X-chromosome inactivation in mammals. Cell 29: 721–724

    Article  PubMed  CAS  Google Scholar 

  • Matuszewski B (1982) Diptera I: Cecidomyiidae. In: John B (ed) Animal cytogenetics, vol III. Insecta 3. Borntraeger, Berlin, pp 1–140

    Google Scholar 

  • McCarthy BJ, Hoyer BH (1964) Identity of DNA and diversity of messenger RNA molecules in normal mouse tissues. Proc Natl Acad Sci USA 52: 915–922

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1967) Genetic systems regulating gene expression during development. Dev Biol Suppl 1: 84–112

    Google Scholar 

  • McLaren A (1981) Germ cells and soma: a new look at an old problem. Yale Univ Press, New Haven, pp 1–119

    Google Scholar 

  • McLaren A, Wylie CC (1983) Current problems in germ cell differentiation. Cambridge Univ Press, Cambridge, pp 1–401

    Google Scholar 

  • McTavish C, Sommerville J (1980) Macronuclear DNA organization and transcription in Paramecium primaurelia. Chromosoma 78: 147–164

    Article  PubMed  CAS  Google Scholar 

  • Metz CW (1938) Chromosome behavior, inheritance and sex determination in Sciara. Am Nat 72: 485–520

    Article  Google Scholar 

  • Metz CW, Lawrence EG (1938) Preliminary observations on Sciara hybrids. J Hered 29: 179–186

    Google Scholar 

  • Meyer GF, Lipps HJ (1980) Chromatin elimination in the hypotrichous ciliate Stylonychia mytilus. Chromosoma 77: 285–297

    Article  PubMed  CAS  Google Scholar 

  • Meyer O (1895) Celluläre Untersuchungen an Nematoden-Eiern. Jena Z Naturwiss 29: 391–410

    Google Scholar 

  • Mintz B (1962) Formation of genotypically mosaic mouse embryos. Am Zool 2: 432

    Google Scholar 

  • Moritz KB (1967a) Die Blastomerendifferenzierung für Soma and Keimbahn bei Parascaris equorum. I. Cytochemische und photometrische Untersuchungen. Wilhelm Roux ’ Arch Entwicklungsmech 159: 31–88

    Article  Google Scholar 

  • Moritz KB (1967b) Die Blastomerendifferenzierung für Soma und Keimbahn bei Parascaris equorum. II. Untersuchungen mittels UV-Bestrahlung und Zentrifugierung. Wilhelm Roux ’ Arch Entwicklungsmech 159: 203–266

    Article  Google Scholar 

  • Moritz K B (1970a) Quantitative aspects of chromosomal composition in Ascaris megalocephala. In: Wied GL, Bahr GF (eds) Introduction to quantitative cytochemistry, vol II. Academic Press, London New York, pp 57–75

    Google Scholar 

  • Moritz KB (1970b) DNS-Variation im keimbahnbegrenzten Chromatin und autoradiographisehe Befunde zu seiner Funktion bei Parascaris equorum. Verh Dtsch Zool Ges 64: 36–42

    Google Scholar 

  • Moritz KB (1977) Die Chromosomen von Ascaris in der Keimbahn und im embryonalen Soma. Verh Dtsch Zool Ges 1977: 290

    Google Scholar 

  • Moritz KB (1984) Der molekulare Mechanismus der Chromatindiminution. Zugleich ein Beitrag zur Telomerorganisation und -dynamik. Verh Dtsch Zool Ges 1984 77: 197

    Google Scholar 

  • Moritz KB, Bauer M (1984) Cytoplasmatische Bedingungen der Chromatindiminution bei Parascaris equorum. Verh Dtsch Zool Ges 77: 164

    Google Scholar 

  • Moritz K B, Roth GE (1976) Complexity of germline and somatic DNA in Ascaris. Nature (London) 259: 55–57

    Article  CAS  Google Scholar 

  • Moritz KB, Roth GE (1978) Die mitochondriale DNA im Ei von Ascaris. Verh Dtsch Zool Ges 71: 231

    Google Scholar 

  • Müller F, Walker P, Aeby P, Neuhaus H, Back E, Tobler H (1982a) Molecular cloning and sequence analysis of highly repetitive DNA sequences contained in the eliminated genome of Ascaris lumbricoides. In: Burger MM, Weber R (eds) Embryonic development, part A: Genetic aspects. Liss, New York, pp 127–138

    Google Scholar 

  • Müller F, Walker P, Aeby P, Neuhaus H, Felder H, Back E, Tobler H (1982b) Nucleotide sequence of satellite DNA contained in the eliminated genome of Ascaris lumbricoides. Nucleic Acids Res 10: 7493–7510

    Article  PubMed  Google Scholar 

  • Müntzing A (1949) Accessory chromosomes in Secale and Poo. Hereditas Suppl 35: 402–411

    Article  Google Scholar 

  • Murti KG, Prescott DM (1970) Micronuclear ribonucleic acid in Tetrahymena pyriformis. J Cell Biol 47: 460–467

    Article  PubMed  CAS  Google Scholar 

  • Mutafova T (1975) Morphology and behaviour of sex chromosomes during meiosis in Ascaris suum. Z Parasitenkd 46: 291–295

    Article  CAS  Google Scholar 

  • Nagt W (1976) Zellkern und Zellzyklen. Ulmer, Stuttgart, pp 1–486

    Google Scholar 

  • Nagl W (1978) Endopolyploidy and polyteny in differentiation and evolution. Elsevier/NorthHolland, Amsterdam, pp 1–283

    Google Scholar 

  • Nagt W (1983) Heterochromatin elimination in the orchid Dendrobium. Protoplasma 118: 234–237

    Article  Google Scholar 

  • Nelson-Rees WA, Hoy MA, Roush RT (1980) Heterochromatinization, chromatin elimination and haploidization in the parahaploid mite Metaseiulus occidentalis (Nesbitt) ( Acarina: Phytoseiidae). Chromosoma 77: 263–276

    Google Scholar 

  • Nicklas RB (1959) An experimental and descriptive study of chromosome elimination in Miastor spec. (Cecidomyidae; Diptera). Chromosoma 10: 301–336

    Article  Google Scholar 

  • Nicklas RB (1960) The chromosome cycle of a primitive Cecidomyiid Mycophila speyeri. Chromosoma 11: 402–418

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD, Sutasurya LA (1979) Primordial germ cells in the chordates. Cambridge Univ Press, Cambridge, pp 1–187

    Google Scholar 

  • Nieuwkoop PD, Sutasurya LA (1981) Primordial germ cells in the invertebrates. Cambridge Univ Press, Cambridge, pp 1–258

    Google Scholar 

  • Nigon V (1965) Développement et reproduction des Nématodes. In: Grassé PP (ed) Traité de zoologie, vol IV. Masson, Paris, pp 218–386

    Google Scholar 

  • Nigon V, Guerrier P, Monin H (1960) L’architecture polaire de l’oeuf et les mouvements des constituants cellulaires au cours des premières étapes du développement chez quelques Nématodes. Bull Biol Fr Belg 94: 131–202

    Google Scholar 

  • Noda K, Kanai C (1977) An ultrastructural observation on Pelmatohydra robusta at sexual and asexual stages, with a special reference to “germinal plasm”. J Ultrastruct Res 61.284–294

    Google Scholar 

  • Noll F, Bielka H (1968) Zur Biochemie der Embryogenese von Ascaris I. Gehalt und Verteilungsmuster der Nukleinsäuren. Acta Biol Med Germ 20: 565–575

    Google Scholar 

  • Nur U (1980) Evolution of unusual chromosome systems in scale insects (Coccoidea: Homoptera). In: Blackman RL, Hewitt GM, Ashburner M (eds) Insect cytogenetics. Blackwell Sci Publ, Oxford, pp 97–117

    Google Scholar 

  • Nussbaum M (1880) Zur Differenzierung des Geschlechts im Thierreich. Arch Mikrosk Anat Entwicklungsmech 18: 1–120

    Article  Google Scholar 

  • Okada TS (1983) Recent progress in studies of the transdifferentiation of eye tissue in vitro. Cell Differ 13: 177–183

    Article  PubMed  CAS  Google Scholar 

  • Painter TS (1945) Chromatin diminution. Trans Conn Acad Arts Sci 36: 443–448

    Google Scholar 

  • Painter TS (1966) The role of the E-chromosomes in Cecidomyiidae. Proc Natl Acad Sci USA 56: 853–855

    Article  PubMed  CAS  Google Scholar 

  • Painter TS, Stone W (1935) Chromosome fusion and speciation in Drosophilae. Genetics 20: 327–341

    PubMed  CAS  Google Scholar 

  • Pasteels J (1948 a) Etude cytochimique des acides nucléiques dans le cycle germinal de l’Ascaris megalocephala Experientia 4:150–152

    Google Scholar 

  • Pasteels J (1948 b) Recherches sur le cycle germinal chez l’Ascaris Etude cytochimique des acides nucléiques dans l’oögénèse, la spermatogénèse et le développement chez Parascaris eyuorum Goerze. Arch Biol 59:405–446

    Google Scholar 

  • Pasternak J, Barrell R (1976) Quantitation of nuclear DNA in Ascaris lumbricoides: DNA constancy and chromatin diminution. Genet Res Cambridge 27: 339–348

    Google Scholar 

  • Radzikowski S (1973) Die Entwicklung des Kernapparates und die Nukleinsäuresynthese während der Konjugation von Chilodonella cucullulus O. F. Müller. Arch Protistenkd 115: 419–428

    CAS  Google Scholar 

  • Reitberger A (1934) Das Verhalten der Chromosomen bei der pädogenetischen Entwicklung der Cecidomyide Oligarces paradoxus, mit besonderer Berücksichtigung der Chromosomen-Elimination. Verh Schweiz Naturforsch Ges 115: 359–360

    Google Scholar 

  • Reitberger A (1940) Die Cytologie des pädagenetischen Entwicklungszyklus der Gallmücke Oligarces paradoxus Mein. Chromosoma 1: 391–473

    Article  Google Scholar 

  • Rempel JG, Church NS (1969) The embryology of Lytta viridana Le Conte ( Coleoptera: Meloidae) IV. Chromatin elimination. Can J Zool 47: 351–353

    Google Scholar 

  • Rieger R, Michaelis A, Green MM (1968) A glossary of genetics and cytogenetics. Springer, Berlin Heidelberg New York, pp 1–507

    Chapter  Google Scholar 

  • Ris H, Kleinfeld R (1952) Cytochemical studies on the chromatin elimination in Solenobia ( Lepidoptera ). Chromosoma 5: 363–371

    Google Scholar 

  • Ritossa FM (1968) Unstable redundancy of genes for ribosomal RNA. Proc Natl Acad Sci USA 60: 509–516

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig B, Liao LW, Hirsh D (1983 a) Sequence of the C. elegans transposable element Tel. Nucleic Acids Res 11: 4201–4209

    Google Scholar 

  • Rosenzweig B, Liao LW, Hirsh D (1983 b) Target sequences for the C. elegans transposable element Tel. Nucleic Acids Res 11: 7137–7140

    Google Scholar 

  • Roth GE (1979) Satellite DNA properties of the germ line limited DNA and the organization of the somatic genomes in the nematodes Ascaris suum and Parascaris equorum. Chromo-soma 74: 355–371

    Article  CAS  Google Scholar 

  • Roth GE, Moritz KB (1981) Restriction enzyme analysis of the germ line limited DNA of Ascaris suum. Chromosoma 83: 169–190

    Article  PubMed  CAS  Google Scholar 

  • Ruan K, Emmons SW (1984) Extrachromosomal copies of transposon Tel in the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 81: 4018–4022

    Article  PubMed  CAS  Google Scholar 

  • Sang JH (1984) Genetics and development. Longman, London, pp 1–398

    Google Scholar 

  • Scarano E, Iaccarino M, Grippo P, Parisi F (1967) The heterogeneity of thymine methyl group origin in DNA pyrimidine isostichs of developing sea urchin embryos. Proc Natl Acad Sci USA 57: 1394–1400

    Article  PubMed  CAS  Google Scholar 

  • Schachat F, O’Connor DJ, Epstein HF (1978) The moderately repetitive DNA sequences of Caenorhanditis elegans do not show short-period interspersion. Biochim Biophys Acta 520: 688–692

    Article  PubMed  CAS  Google Scholar 

  • Schimke RT, Alt FW, Kellems RE, Kaufman RJ, Bertino JR (1978) Amplification of folate reductase genes in methotrexate-resistant cultured mouse cells. Cold Spring Harbor Symp Quant Biol 42: 649–657

    Article  PubMed  CAS  Google Scholar 

  • Schleip W (1923) Die Wirkung des ultravioletten Lichtes auf die morphologischen Bestandteile des Ascariseies. Arch Zellforsch 17: 289–367

    Google Scholar 

  • Schmid V, Alder H (1984) Isolated mononucleated, striated muscle can undergo pluripotent transdifferentiation and form a complex regenerate. Cell 38: 801–809

    Article  PubMed  CAS  Google Scholar 

  • Schrader F (1935) Notes on the mitotic behavior of long chromosomes. Cytologia 6: 422–430

    Article  Google Scholar 

  • Schwartz V, Meister H (1975) Die Extinktion der feulgengefärbten Makronucleusanlage von Paramaecium bursaria in der DNS-armen Phase. Arch Protistenkd 117: 60–64

    CAS  Google Scholar 

  • Searcy DG, MacInnis AJ (1970) Measurements by DNA renaturation of the genetic basis of parasitic reduction. Evolution 24: 796–806

    Article  Google Scholar 

  • Seiler J (1914) Das Verhalten der Geschlechtschromosomen bei Lepidopteren. Arch Zellforsch 13: 159–269

    Google Scholar 

  • Shapiro JA (1983) Mobile genetic elements. Academic Press, London New York, pp 1–688

    Google Scholar 

  • Singer MF (1982) Highly repeated sequenes in mammalian genomes. Int Rev Cytol 76: 67–112

    Article  PubMed  CAS  Google Scholar 

  • Slack JMW (1983) From egg to embryo: Determinative events in early development. Cambridge Univ Press, Cambridge, pp 1–241

    Google Scholar 

  • Smith LD (1966) The role of a “germinal plasm” in the formation of primordial germ cells in Rana pipiens. Dev Biol 14: 330–347

    Article  PubMed  CAS  Google Scholar 

  • Sonneborn TM (1974) Paramecium aurelia. In: King RC (ed) Handbook of genetics, vol II. Plenum Press, New York, pp 469–594

    Google Scholar 

  • Sonnenblick BP (1965) The early embryology of Drosophila melanogaster. In: Demerec M (ed) Biology of Drosophila. Hafner, New York, pp 62–167

    Google Scholar 

  • Sorsa M, Suomalainen E (1975) Electron microscopy of chromatin elimination in Cidaria ( Lepidoptera ). Hereditas 80: 35–40

    Google Scholar 

  • Spear BB, Gall JG (1973) Independent control of ribosomal gene replication in polytene chromosomes of Drosophila melanogaster. Proc Natl Acad Sci USA 70: 1359–1363

    Article  PubMed  CAS  Google Scholar 

  • Spemann H (1903) Entwicklungsphysiologische Studien am Triton-Ei. II. Arch Entwicklungsmech Org 15: 448–534

    Google Scholar 

  • Spradling AC, Mahowald AP (1980) Amplification of genes for chorion proteins during oogenesis in Drosophila melanogaster. Proc Natl Acad Sci USA 77: 1096–1100

    Article  PubMed  CAS  Google Scholar 

  • Stanley HP, Kasinsky HE, Bols NC (1984) Meiotic chromatin diminution in a vertebrate, the holocephalan fish Hydrolagus colliei ( Chondrichthyes, Holocephali). Tissue Cell 16: 203–215

    Google Scholar 

  • Stark GR, Wahl GM (1984) Gene amplification. Annu Rev Biochem 53: 447–491

    Article  PubMed  CAS  Google Scholar 

  • Steinbrück G (1986) Molecular reorganization during nuclear differentiation in ciliates (this Vol)

    Google Scholar 

  • Steinbrück G, Haas I, Hellmer KH, Ammermann D (1981) Characterization of macronuclear DNA in five species of Ciliates. Chromosoma 83: 199–208

    Article  PubMed  Google Scholar 

  • Stevens NM (1909) The effect of ultraviolet-light upon the developing eggs of Ascaris megalocephala. Arch Entwicklungsmech Org 27: 622–639

    Article  Google Scholar 

  • Steward FC, Mapes MO, Kent AE, Holsten RD (1964) Growth and development of cultured plant cells. Science 143: 20–27

    Article  PubMed  CAS  Google Scholar 

  • Strassen O zur (1896) Embryonalentwicklung der Ascaris megalocephala. Arch Entwicklungsmech 3:27–105, 133–190

    Google Scholar 

  • Strassen O zur (1898) Über die Riesenbildung bei Ascariseiern. Arch Entwicklungsmech 7: 642–676

    Article  Google Scholar 

  • Strassen O zur (1906) Die Geschichte der T-Riesen von Ascaris megalocephala als Grundlage zu einer Entwicklungsmechanik dieser Spezies. Zoologica 40: 1–342

    Google Scholar 

  • Streble H, Krauter D (1982) Das Leben im Wassertropfen, Mikroflora und Mikrofauna des Süßwassers. Franckh’sche Verlagshandlung, Keller u Cie, Stuttgart, pp 1–336

    Google Scholar 

  • Streeck RE, Moritz KB, Beer K (1982) Chromatin diminution in Ascaris suum: nucleotide sequence of the eliminated satellite DNA. Nucleic Acids Res 10: 3495–3502

    Article  PubMed  CAS  Google Scholar 

  • Strome S, Wood WB (1982) Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. Proc Nall Acad Sci USA 79: 1558–1562

    Article  CAS  Google Scholar 

  • Strome S, Wood WB (1983) Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos. Cell 35: 15–25

    Article  PubMed  CAS  Google Scholar 

  • Sturm KS, Taylor JH (1981) Distribution of 5-methylcytosine in the DNA of somatic and germ-line cells from bovine tissues. Nucleic Acids Res 9: 4537–4546

    Article  PubMed  CAS  Google Scholar 

  • Sulston JE, Brenner S (1974) The DNA of Caenorhabditis elegans. Genetics 77: 95–104

    PubMed  CAS  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100: 64–119

    Article  PubMed  CAS  Google Scholar 

  • Tadano M (1968) Nemathelminthes. In: Kumé M, Dan K (eds) Invertebrate embryology. Nolit, Belgrad, pp 159–191

    Google Scholar 

  • Tanabe K, Kotani M (1974) Relationship between the amount of the “germinal plasm” and the number of primordial germ cells in Xenopus laevis. J Embryol Exp Morphol 31: 89–98

    PubMed  CAS  Google Scholar 

  • Tardent P (1978) Coelenterata, Cnidaria. In: Seidel F (ed) Morphogenese der Tiere. Fischer, Jena, pp 69–415

    Google Scholar 

  • Tarkowski AK (1961) Mouse chimaeras developed from fused eggs. Nature (London) 190: 857–860

    Article  CAS  Google Scholar 

  • Tartof KD (1971) Increasing the multiplicity of ribosomal RNA genes in Drosophila melanogaster. Science 171: 294–297

    Article  PubMed  CAS  Google Scholar 

  • Tartof KD (1975) Redundant genes. Annu Rev Genet 9: 355–385

    Article  PubMed  CAS  Google Scholar 

  • Tchou S (1937) Une nouvelle race chinoise d’Ascaris megalocephala (type trivalens). C R Acad Sci: 1676–1677

    Google Scholar 

  • Thomas C, Prasad RS (1980) Chromosome elimination in Ctenocephalides orientis ( Siphonaptera ). Cytobios 29: 109–114

    Google Scholar 

  • Thomas HM, Pickering RA (1983) Chromosome elimination in Hordeum vulgare x H. hulbosum hybrids. 1. Comparison of stable and unstable amphidiploids. Theor Appl Genet 66: 135–140

    Google Scholar 

  • Tobler H (1972) The problem of genetic identity of different cell types. In: Ursprung H (ed) Nucleic acid hybridization in the study of cell differentiation. Results and problems in cell differentiation, vol III. Springer, Berlin Heidelberg New York, pp 1 9

    Google Scholar 

  • Tobler H (1975) Occurrence and developmental significance of gene amplification. In: Weber R (ed) The biochemistry of animal development, vol I11. Academic Press, London New York, pp 91–143

    Google Scholar 

  • Tobler H (1976) Genetic difference between germ line and somatic DNA in Ascaris lumhricoides. In: Müller-Bérat N, Rosenfeld C, Tarin D, Viza D (eds) Progress in differentiation research. Elsevier/North-Holland, Amsterdam, pp 147–154

    Google Scholar 

  • Tobler H, Gut C (1974) Mitochondrial DNA from 4-cell stages of Ascaris lumbricoides. J Cell Sci 16: 593–601

    PubMed  CAS  Google Scholar 

  • Tobler H, Smith KD, Ursprung H (1972) Molecular aspects of chromatin elimination in Ascaris lumbricoides. Dev Biol 27: 190–203

    Article  PubMed  CAS  Google Scholar 

  • Tobler H, Zulauf E, Kuhn O (1974) Ribosomal RNA genes in germ line and somatic cells of Ascaris lumbricoides. Dev Biol 41: 218–223

    Article  PubMed  CAS  Google Scholar 

  • Tobler H, Müller F, Back E, Aeby P (1985) Germ line — soma differentiation in Ascaris: A molecular approach. Experientia 41: 1311–1319

    Google Scholar 

  • Tonegawa S (1983) Somatic generation of antibody diversity. Nature (London) 302: 575–581

    Article  CAS  Google Scholar 

  • Triantaphyllou AC (1971) Genetics and cytology. In: Zuckermann BM, Mai WF, Rohde RA (eds) Plant parasitic nematodes, vol II. Cytogenetics, host-parasite interactions and physiology. Academic Press, London New York, pp 1–34

    Google Scholar 

  • Ubisch L von (1943) Über die Bedeutung der Diminution von Ascaris megalocephala. Acta Biotheor 7: 163–181

    Article  Google Scholar 

  • Ueda R, Okada M (1982) Induction of pole cells in sterilized Drosophila embryos by injection of subcellular fractions from eggs. Proc Natl Acad Sci USA 79: 6946–6950

    Article  PubMed  CAS  Google Scholar 

  • Vanyushin BF, Tkacheva SG, Belozersky AN (1970) Rare bases in animal DNA. Nature (London) 225: 948–949

    Article  CAS  Google Scholar 

  • Vassilev I, Mutafova T (1974) Comparative studies on the karyotype of Ascaris suum and “Ascaris ovis”. Z Parasitenkd 43: 115–121

    Article  CAS  Google Scholar 

  • Vendrely R (1955) The deoxyribonucleic acid content of the nucleus. In: Chargaff E, Davidson JN (eds) The nucleic acids, vol II. Academic Press, London New York, pp 155–180

    Google Scholar 

  • Vereiskaya VN (1975) A cytochemical study of the elimination chromatin in the silkworm (Bombyx mori L.) meiosis. Tsitologyia 17: 603–606

    Google Scholar 

  • Wakahara M (1977) Partial characterization of “primordial germ cell-forming activity” localized in vegetal pole cytoplasm in anuran eggs. J Embryo) Exp Morphol 39: 221–233

    CAS  Google Scholar 

  • Wakahara M (1978) Induction of supernumerary primordial germ cells by injecting vegetal pole cytoplasm into Xenopus eggs. J Exp Zool 203: 159–164

    Article  Google Scholar 

  • Wallace H, Morray J, Langridge WHR (1971) Alternative model for gene amplification. Nature (London) New Biol 230: 201–203

    Article  CAS  Google Scholar 

  • Walton AC (1917) The oogenesis and early embryology of Ascaris canis Werner. J Morphol 30: 527–603

    Article  Google Scholar 

  • Walton AC (1924) Studies on nematode gametogenesis. Z Zellen- Gewebel 1: 167–239

    Article  Google Scholar 

  • Walton AC (1959) Some parasites and their chromosomes. J Parasitol 45: 1–20

    Article  PubMed  CAS  Google Scholar 

  • Walton AC (1974) Gametogenesis. In: Chitwood BG, Chitwood MB (eds) Introduction to hematology. Univ Park Press, Baltimore, pp 191–201

    Google Scholar 

  • Waring GL, Allis CD, Mahowald AP (1978) Isolation of polar granules and the identification of polar granule-specific protein. Dev Biol 66: 197–206

    Article  PubMed  CAS  Google Scholar 

  • Weismann A (1885) Die Continuität des Keimplasmas als Grundlage einer Theorie der Vererbung. Fischer, Jena

    Google Scholar 

  • Weismann A (1892) Das Keimplasma. Eine Theorie der Vererbung. Fischer, Jena

    Google Scholar 

  • Weiss MC, Green H (1967) Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes. Proc Natl Acad Sci USA 58: 1104–1111

    Article  PubMed  CAS  Google Scholar 

  • White MJD (1936) Chromosome cycle of Ascaris megalocephala. Nature (London) 137: 783

    Article  Google Scholar 

  • White MJD (1947) The cytology of the Cecidomyidae (Diptera) III. J Morphol 80: 1–24

    Article  PubMed  CAS  Google Scholar 

  • White MJD (1950) Cytological studies on gall midges (Cecidomyidae). Univ Tex Publ 5007: 1–80

    Google Scholar 

  • White MJD (1954) Animal cytology and evolution, 2nd edn. Cambridge Univ Press, Cambridge, pp 1–454

    Google Scholar 

  • White MJD (1973) Animal cytology and evolution, 3rd edn. Cambridge Univ Press, Cambridge, pp 1–961

    Google Scholar 

  • Whitington PMcD, Dixon KE (1975) Quantitative studies of germ plasm and germ cells during early embryogenesis of Xenopus laevis. J Embryol Exp Morphol 33: 57–74

    PubMed  CAS  Google Scholar 

  • Wilson EB (1896) The cell in development and inheritance, 1st edn. Macmillan, New York, pp 1371

    Book  Google Scholar 

  • Wilson EB (1925) The cell in development and heredity, 3rd edn. Macmillan, New York, pp 112–32

    Google Scholar 

  • Wolf N, Priess J, Hirsh D (1983) Segregation of germline granules in early embryos of Caenorhabditis elegans: an electron microscopic analysis. J Embryol Exp Morphol 73: 297–306

    PubMed  CAS  Google Scholar 

  • Wolff E (1964) L’origine de la lignée germinale. Hermann, Paris, pp 1–370

    Google Scholar 

  • Wood WB, Strome S, Laufer JS (1983) Localization and determination in embryos of Caenorhabditis elegans. In: Jeffery WR, Raff RA (eds) Time, space, and pattern in embryonic development. Liss, New York, pp 221–239

    Google Scholar 

  • Yamada T, McDevitt DS (1984) Conversion of iris epithelial cells as a model of differentiation control. Differentiation 27: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Murakami K, Furusawa M, Miwa J (1983) Germline-specific antigens identified by monoclonal antibodies in the nematode Caenorhanditis elegans. Dev Growth Differ 25: 121–131

    Article  Google Scholar 

  • Yao MC, Gall JG (1979) Alteration of the Tetrahymena genome during nuclear differentiation. J Protozool 26: 10–13

    CAS  Google Scholar 

  • Yao MC, Gorovsky MA (1974) Comparison of the sequences of macro-and micronuclear DNA of Tetrahymena pyriformis. Chromosoma 48: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Yao T, Pai S (1942) Heteropycnosis and chromatin diminution in Cosmocerca sp. Sci Rec Acad Sinica 1: 197–202

    Google Scholar 

  • Zalokar M (1976) Autoradiographic study of protein and RNA formation during early development of Drosophila eggs. Dev Biol 49: 425–437

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tobler, H. (1986). The Differentiation of Germ and Somatic Cell Lines in Nematodes. In: Hennig, W. (eds) Germ Line — Soma Differentiation. Results and Problems in Cell Differentiation, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39838-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39838-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21958-4

  • Online ISBN: 978-3-540-39838-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics