Skip to main content

Diversity of Ecto-mycorrhizal Fungal Communities in Relation to the Abiotic Environment

  • Chapter
Mycorrhizal Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 157))

Abstract

In boreal forest ecosystems, the richness and complexity of ecto-mycorrhizal (EM) fungal communities are in striking contrast to the often species-poor stands of host trees. The factors that influence community development and maintain this high EM fungal diversity are, however, poorly understood. There are very few studies that have examined determinants of EM fungal diversity under natural undisturbed systems, with most studies examining diversity in relation to changes in abiotic factors due to pollution and/or forest management practices. In this chapter, we attempt to compile what little data are available on natural factors and suggest some areas for future studies. The great majority of the chapter is however, concerned with anthropogenic influences upon EM fungal diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuzinadh RA, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal fungi I. Utilization of peptides and proteins by ecto-mycorrhizal fungi. New Phytol 103: 481–493

    Article  Google Scholar 

  • Adams SN, Cooper JE, Dickson DA, Dickson EL, Seaby DA (1978) Some effects of lime and fertilizer on a Sitka spruce plantation. Forestry 5: 57–65

    Article  Google Scholar 

  • Agerer R (1986–1998) Colour atlas of ecto-mycorrhizae. Einhorn-Verlag, Schwäbisch-Gmünd

    Google Scholar 

  • Agerer R, Taylor AFS, Treu R (1998) Effects of acid irrigation and liming on the production of fruit bodies by ecto-mycorrhizal fungi. Plant Soil 199: 83–89

    Article  CAS  Google Scholar 

  • Ahlström K, Persson H, Börjesson I (1988) Fertilization in a mature Scots pine (Pinus sylvestris L.) stand-effects on fine roots. Plant Soil 106: 179–190

    Article  Google Scholar 

  • Alexander IJ, Fairley RI (1983) Effects of N fertilisation on populations of fine roots and mycorrhizas in spruce humus. Plant Soil 71: 49–53

    Article  CAS  Google Scholar 

  • Andersson S, Söderström B (1995) Effects of lime (CaCO3) on ecto-mycorrhizal colonisation of Picea abies (L.) Karst. seedlings planted in a spruce forest. Scand J For Res 10: 149–154

    Article  Google Scholar 

  • Arnebrant K (1994) Nitrogen amendments reduce the growth of extramatrical ectomycorrhizal mycelium. Mycorrhiza 5: 7–15

    Article  CAS  Google Scholar 

  • Arnebrant K, Söderström (1992) Effects of different fertilizer treatments on ecto-mycorrhizal colonization potential in two Scots pine forests in Sweden. For Ecol Manage 53: 77–89

    Google Scholar 

  • Arnolds E (1991) Decline of ecto-mycorrhizal fungi in Europe. Agric Ecosyst Environ 35: 209–244

    Article  Google Scholar 

  • Baar J, ter Braak CJF (1996) Ecto-mycorrhizal sporocarp occurrence as affected by manipulation of litter and humus layers in Scots pine stands of different age. Appl Soil Ecol 4: 61–73

    Article  Google Scholar 

  • Baar J, Horton TR, Kretzer AM, Bruns TD (1999) Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand replacing wildfire. New Phytol 143: 409–418

    Article  Google Scholar 

  • Bakker MR, Garbaye J, Nys C (2000) Effect of liming on the ecto-mycorrhizal status of oak. For Ecol Manage 126: 121–131

    Article  Google Scholar 

  • Baxter JW, Picket STA, Carreiro MM, Dighton J (1999) Ecto-mycorrhizal diversity and community structure in oak forest stands exposed to contrasting anthropogenic impacts. Can J Bot 77: 771–782

    Google Scholar 

  • Bazzaz FA (1975) Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology 56: 485–488

    Article  Google Scholar 

  • Binkley D, Högberg P (1997) Does atmospheric deposition of nitrogen threaten Swedish forests? For Ecol Manage 92: 119–152

    Article  Google Scholar 

  • Brandrud TE (1987) Mycorrhizal fungi in 30 year old, oligotrophic spruce (Picea abies) plantation in SE Norway. A one-year permanent plot study. Agarica 8 (16): 48–58

    Google Scholar 

  • Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170: 63–73

    Article  CAS  Google Scholar 

  • Brunner I, Brunner F, Laursen GA (1992) Characterisation and comparison of macro-fungal communities in an Alnus tenuifolia and an Alnus crispa forest in Alaska. Can J Bot 70: 1247–1258

    Article  Google Scholar 

  • Colpaert JV, Van Laere A, Van Assche JA (1996) Carbon and nitrogen allocation in ectomycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings. Tree Physiol 16 (9): 787–793

    Article  PubMed  CAS  Google Scholar 

  • Conn C, Dighton J (2000) The influence of litter quality on mycorrhizal communities. Soil Biol Biochem 32: 489–496

    Article  CAS  Google Scholar 

  • Cripps C, Miller OK Jr (1993) Ecto-mycorrhizal fungi associated with aspen on three sites in the north-central Rocky Mountains. Can J Bot 71: 1414–1420

    Article  Google Scholar 

  • Dahlberg A, Jonsson L, Nylund J-E (1997) Species diversity and distribution of biomass above-and below-ground among ecto-mycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can J Bot 75: 1323–1335

    Article  Google Scholar 

  • Danielson RM (1984) Ecto-mycorrhizal association in Jack pine stands in north eastern Alberta. Can J Bot 42 (5): 932–939

    Article  Google Scholar 

  • Danielson RM (1985) Mycorrhizae and reclamation of stressed terrestrial environments. In: Robert LT, Klein DA (eds) Soil reclamation processes. Dekker, New York, pp 173–201

    Google Scholar 

  • Danielson RM,Visser S (1989) Effects of forest soil acidification on ecto-mycorrhizal and vesicular-arbuscular mycorrhizal development. New Phytol 112: 41–48

    Article  Google Scholar 

  • Deacon JW, Fleming LV (1992) Interactions of ecto-mycorrhizal fungi. In: Allen MJ (ed) Mycorrhizal functioning. An integrated plant-fungal process. Chapman and Hall, New York, pp 249–300

    Google Scholar 

  • Dighton J, Jansen AE (1991) Atmospheric pollutants and ecto-mycorrhizae: more questions than answers? Environ Poll 73: 179–204

    Article  CAS  Google Scholar 

  • Dighton J, Mason PA (1985) Mycorrhizal dynamics during forest tree development. In: Moore D, Casselton LA, Wood DA, Frankland JC (eds) Developmental biology of higher Fungi. Cambridge Univ Press, Cambridge, pp 117–139

    Google Scholar 

  • Dighton J, Skeffington RA (1987) Effects of artificial acid precipitation on the mycorrhizas of Scots pine seedlings. New Phytol 107: 191–202

    Article  CAS  Google Scholar 

  • Dighton J, Morale Bonilla AS, Jiminez-Nunez RA, Martinez N (2000) Determinants of leaf litter patchiness in mixed species New Jersey pine barrens forest and its possible influence on soil and soil biota. Biol Fertil Soils 31: 288–293

    Article  Google Scholar 

  • Edwards GS, Kelly JM (1992) Ecto-mycorrhizal colonisation of loblolly-pine seedlings during 3 growing seasons in response to ozone, acid precipitation and soil Mg status. Environ Poll 76: 71–77

    Article  CAS  Google Scholar 

  • Egger KN (1995) Molecular analysis of ecto-mycorrhizal fungal communities. Can J Bot 73 [Suppl 1]: S1415–S1422

    Article  CAS  Google Scholar 

  • Emmett BA, Brittain SA, Hughes S, Görres J, Kennedy V, Norris D, Rafarel R, Reynolds B, Stevens PA (1995) Nitrogen additions (NaNO3 and NH4NO3) at Aber forest Wales I. Response of throughfall and soil water chemistry. For Ecol Manage 71: 45–59

    Google Scholar 

  • Erland S (1990) Effects of liming on pine ecto–mycorrhiza. Doctoral Thesis, Lund University, ISBN 91–7105–014–0

    Google Scholar 

  • Erland S, Finlay RD (1992) Effects of temperature and incubation time on the ability of three ecto-mycorrhizal fungi to colonise Pinus sylvestris roots. Mycol Res 96: 270–272

    Article  Google Scholar 

  • Erland S, Söderström B (1991) Effects of lime and ash treatments on ecto-mycorrhizal infection of Pinus sylvestris L. seedlings planted in a pine forest. Scand J For Res 6: 519–526

    Article  Google Scholar 

  • Erland S, Taylor AFS (1999) Resupinate Ecto-mycorrhizal Fungal Genera. In: Cairney JWG, Chambers SM (eds) Ecto-mycorrhizal fungi: key genera in profile. Springer, Berlin Heidelberg New York, pp 347–363

    Google Scholar 

  • Erland S, Jonsson T, Mahmood S, Finlay RD (1999) Below-ground ecto-mycorrhizal community structure in two Picea abies forests in southern Sweden. Scand J For Res 14: 209–217

    Article  Google Scholar 

  • Evers FH, Huettl RF (1991) A new fertilisation strategy in declining forests. In: Zöttl HW, Huettl RF (eds) Management and nutrition of forests under stress. Kluwer, Dordrecht, pp 495–508

    Google Scholar 

  • Fogel R (1976) Ecological studies of hypogeous fungi II. Sporocarp phenology in a western Oregon Douglas fir stand. Can J Bot 54: 1152–1162

    Article  Google Scholar 

  • Fogel R (1980) Mycorrhizae and nutrient cycling in natural forest ecosystems. New Phytol 86: 199–212

    Article  CAS  Google Scholar 

  • Fransson PMA, Taylor AFS, Finlay RD (2000) Effects of optimal fertilization on below-ground ecto-mycorrhizal community structure in a Norway spruce forest. Tree Physiol 20: 599–606

    Article  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ecto-mycorrhizal fungi in a Pinus muricata forest: above-and below-ground views. Can J Bot 74: 1572–1583

    Article  Google Scholar 

  • Gardes M, White TJ, Fortin JA, Bruns TD, Taylor JW (1991) Identification of indigenous and introduced symbiotic fungi in ecto-mycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Can J Bot 69: 180–190

    Article  CAS  Google Scholar 

  • Gardner JH, Malajczuk N (1984) Recolonisation by mycorrhizal fungi of rehabilitated bauxite mine sites in Western Australia. For Ecol Manage 24: 27–42

    Article  Google Scholar 

  • Giller PS (1996) The diversity of soil communities, the `poor man’s tropical rainforest’. Biol Con 5: 135–168

    Google Scholar 

  • Glenn MG, Wagner WS, Webb SL (1991) Mycorrhizal status of mature red spruce (Picea rubens) in mesic and wetland sites of northwestern New Jersey. Can J For Res 21: 741–749

    Article  Google Scholar 

  • Godbold DL, Berntson GM, Bazzaz FA (1997) Growth and mycorrhizal colonization of three North American tree species under elevated CO2. New Phytol 137: 433–440

    Article  CAS  Google Scholar 

  • Goulden ML,Wofsy SC, Harden JW, Trumbore SE, Crill PM, Gower ST, Fries T, Daube BC, Fan SM, Sutton DJ, Bazzaz A, Munger JW (1998) Sensitivity of boreal forest carbon balance to soil thaw. Science 279: 214–217

    Article  Google Scholar 

  • Gulden G, Hoiland K, Bendiksen K, Brandrud TE, Foss BS, Jenssen HB (1992) Macromycetes and air pollution: mycocoenological studies in oligotrophic spruce forests in Europe. Bibl Mycol 144. Cramer, Stuttgart

    Google Scholar 

  • Hantschel RE, Kamp T, Beese F (1995) Increasing the soil temperature to study global warming effects on the soil nitrogen cycle in agroecosystems. J Biogeogr 22 (2/3): 375–380

    Article  Google Scholar 

  • Harrison AF, Harkness DD, Rowland AP, Garnett JS, Bacon PJ (2000) Annual carbon and nitrogen fluxes in soils along the European transect, determined using 14C-bomb. In: Schulze E-D (ed) Ecological studies, vol 142. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hartley J, Cairney JWG, Meharg AA (1997) Do ecto-mycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189: 303–319

    Article  CAS  Google Scholar 

  • Hartley J, Cairney JWG, Freestone P, Woods C, Meharg AA (1999) The effects of multiple metal contamination on ecto-mycorrhizal Scots pine (Pinus sylvestris) seedlings. Environ Pollut 106: 413–424

    Article  PubMed  CAS  Google Scholar 

  • Harvey AE, Larsen MJ, Jurgensen MF (1976) Distribution of ecto-mycorrhizae in a mature Douglas fir larch forest soil in western Montana. For Sci 22 (4): 393–398

    Google Scholar 

  • Harvey AE, Larsen MJ, Jurgensen MF (1978) Comparative distribution of ecto-mycorrhizae in soils of three western Montana forest habitat types. For Sci 25 (2): 350–358

    Google Scholar 

  • Hatch AB (1937) The physical basis of mycotrophy in the genus Pinus. Black Rock For Bull 6: 168

    Google Scholar 

  • Haug I (1989) Intracellular infection in the meristematic region of `Piceirhiza gelatinosa’ mycorrhizas. New Phytol 111: 203–207

    Article  Google Scholar 

  • Haug I, Feger KH (1990/1991) Effects of fertilisation with MgSO4 and (NH4)2SO4 on soil solution chemistry, mycorrhiza and nutrient content of fine roots in a Norway spruce stand. Water Air Soil Pollut 54: 453–467

    Google Scholar 

  • Hilton RN, Malajczuk N, Pearce MH (1989) Larger fungi of the Jarrah forest: an ecological and taxonomic survey. In: Dell B (ed) The Jarrah forest. Kluwer, Dordrecht

    Google Scholar 

  • Horton TR, Cazares E, Bruns TD (1998) Ecto-mycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8: 11–18

    Article  Google Scholar 

  • Hung LL, Trappe JM (1983) Growth variation between and within species of ecto-mycorrhizal fungi in response to pH in vitro. Mycologia 75: 234–241

    Article  Google Scholar 

  • Janos DP (1980) Mycorrhizae influence tropical succession. Biotropica 12: 56–54

    Article  Google Scholar 

  • Jeffries P (1999) Scleroderma. In: Cairney JWG, Chambers SM (eds) Ecto-mycorrhizal fungi: key genera in profile. Springer, Berlin Heidelberg New York, pp 187–200

    Google Scholar 

  • Johnson CN (1995) Interactions between fire, mycophagous mammals, and dispersal of ecto-mycorrhizal fungi in Eucalyptus forests. Oecologia 104: 467–475

    Article  Google Scholar 

  • Jonsson L, Dahlberg A, Nilsson M-C, Zackrisson O, Kârén O (1999) Ectò-mycorrhizal fungal communities in late-successional Swedish boreal forest, and their composition following wildfire. Mol Ecol 8: 205–215

    Article  Google Scholar 

  • Jonsson T, Kokalj S, Finlay RD, Erland S (1999) Ecto-mycorrhizal community structure in a limed spruce forest. Mycol Res 103: 501–508

    Article  Google Scholar 

  • Kârén O, Nylund J-E (1996) Effects of N-free fertilization on ecto-mycorrhiza commu- nity structure in Norway spruce stands in southern Sweden. Plant Soil 181: 295–305

    Article  Google Scholar 

  • Klironomos JN, Kendrick B (1995) Relationships among microarthropods, fungi, and their environment. In: Collins HP, Robertson GP, Klug MJ (eds) The significance and regulation of soil biodiversity. Kluwer, Dortrecht, pp 209–223

    Chapter  Google Scholar 

  • Kraigher H, Batic F, Agerer R (1996) Types of ecto-mycorrhizae and mycobioindication of forest site pollution. Phyton 36: 115–120

    Google Scholar 

  • Kropp BR (1982) Formation of mycorrhizae on nonmycorrhizal western hemlock out-planted on rotten wood and mineral soil. For Sci 28 (4): 706–710

    Google Scholar 

  • Kumpfer W, Heyser W (1986) Effects of stem flow of Beech (Fagus sylvatica L.). In: Gianinazzi-Pearson V, Gianinazzi S (eds)Physiological aspects and genetical aspects of mycorrhizae. Proceedings of the 1st European Symposium on Mycorrhizae. Dijon, 1–5 July 1985, INRA, pp 745–750

    Google Scholar 

  • Lange M (1978) Fungus flora in August. Ten year observations in a Danish beech wood district. Bot Tidsskr 73: 21–54

    Google Scholar 

  • Last FT, Mason PA, Wilson J, Ingleby K, Munrow RC, Fleming LV, Deacon JW (1985) Epidemiology of sheathing (ecto-) mycorrhizas in unsterile soil. A case study of Betula pendula. Proc R Soc Edinb 83B: 299–315

    Google Scholar 

  • Leake JR, Read DJ (1990) Proteinase activity in mycorrhizal fungi. I. The effect of extra-cellular pH on the production and activity of proteinase by ericoid endophytes from soils of contrasting pH. New Phytol 115: 243–250

    Google Scholar 

  • Leake JR, Read DJ (1997) Mycorrhizal fungi in terrestrial ecosystems. In: Wicklow D, Soderström B (eds) The Mycota IV. Experimental and microbial relationships. Springer, Berlin Heidelberg New York, pp 281–301

    Google Scholar 

  • Lehto T (1984) Kalkituksen vaikutus männyn mykoritsoihin. Folia For 609: 1–20

    Google Scholar 

  • Lehto T (1994) Effects of liming and boron fertilization on mycorrhizas of Picea abies. Plant Soil 163: 65–68

    CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7: 139–153

    Article  CAS  Google Scholar 

  • Lilleskov EA, Fahey TJ (1996) Patterns of ecto-mycorrhizal diversity over an atmospheric nitrogen deposition gradient near Kenai, Alaska. In: Szaro TM, Bruns TD (eds) Abstracts of the 1st International Conference on Mycorrhizae. Univ California, Berkeley, 76

    Google Scholar 

  • Lo Buglio KF (1999) Cenococcum. In: Cairney JWG, Chambers SM (eds) Ecto-mycorrhizal Fungi: key genera in profile. Springer, Berlin Heidelberg New York, pp 287–309

    Google Scholar 

  • Lodge DJ, Wentworth TR (1990) Negative associations among VA-mycorrhizal fungi and some ecto-mycorrhizal fungi inhabiting the same root system. Oikos 57: 347–356

    Article  Google Scholar 

  • Lorio PL Jr, Howe VK, Martin CN (1972) Loblolly pine rooting varies with microrelief on wet sites. Ecology 53: 1134–1140

    Article  Google Scholar 

  • Lu X, Malajczuk N, Brundrett M, Dell B (1999) Fruiting of putative ecto-mycorrhizal fungi under blue gum (Eucalyptus globulus) plantations of different ages in Western Australia. Mycorrhiza 8: 255–261

    Article  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, London

    Book  Google Scholar 

  • Mahmood S (2000) Ecto–mycorrhizal community structure and function in relation to forest residue harvesting and wood ash applications. Doctoral Thesis, Lund University. ISBN 91–7105–136–8

    Google Scholar 

  • Mahmood S, Finlay RD, Erland S (1999) Effects of repeated harvesting of forest residues on the ecto-mycorrhizal community in a Swedish spruce forest. New Phytol 142: 577–585

    Article  Google Scholar 

  • Malajczuk N (1987) Ecology and management of ecto-mycorrhizal fungi in regenerating forest ecosystems in Australia. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. 7th NACOM. Gainesville, Florida

    Google Scholar 

  • Malajczuk N, Hingston FJ (1981) Ecto-mycorrhizae associated with Jarrah. Aust J Bot 29: 453–462

    Article  Google Scholar 

  • Marks GC, Foster RC (1967) Succession of mycorrhizal associations on individual roots of Radiata pine. Aust For 31: 194–201

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press/Harcourt Brace, London

    Google Scholar 

  • Mason PA, Last FT, Pelham J, Ingelby K (1982) Ecology of some fungi associated with an ageing stand of birches (Betula pendula and Betula pubescens). For Ecol Manage 4: 19–39

    Article  Google Scholar 

  • Mason P, Wilson J, Last FT, Walker C (1983) The concept of succession in relation to the spread of sheathing mycorrhizal fungi on inoculated tree seedlings growing in unsterile soils. Plant Soil 71: 247–256

    Article  Google Scholar 

  • McAfee BJ, Fortin JA (1987) The influence of pH on the competitive interactions of ectomycorrhizal mycobionts under field conditions. Can J For Res 17: 859–864

    Article  Google Scholar 

  • Mehmann B, Egli S, Braus GH, Brunner I (1995) Coincidence between molecularly and morphologically classified ecto-mycorrhizal morphotypes and fruitbodies in a spruce forest. In: Stocchi V, Bonfante P, Nuti M (eds) Biotechnology of Ecto-mycorrhizae. Plenum Press, New York, pp 229–239

    Google Scholar 

  • Meier S (1991) Quality versus quantity: optimising evaluation of ecto-mycorrhizae for plants under stress. Environ Pollut 73: 205–216

    Article  PubMed  CAS  Google Scholar 

  • Meier S, Robarge WP, Bruck RI, Grand LF (1989) Effects of simulated rain acidity on ecto-mycorrhizae of red spruce seedlings potted in natural soil. Environ Pollut 59: 315–324

    Article  PubMed  CAS  Google Scholar 

  • Meyer FH (1962) Die Buchen and Fichtenmykorrhiza in verschiedenen Bodentypen, ihre Beeinflussung durch Mineraldünger sowie für die Mykorrhizabildung wichtige Faktoren. Mitteilungen der Bundesforschungsanstalt für Forst-and Holzwirtschaft 54: 1–73

    Google Scholar 

  • Meyer J, Schneider BU, Werk K, Oren R, Schulze E-D (1988) Performance of two Picea abies (L.) Karst. stands at different stages of decline. Oecologia 77: 7–13

    Google Scholar 

  • Mikola (1948) On the physiology and ecology of Cenococcum graniformae especially as a mycorrhizal fungus on birch. Inst For Fenn Commun 36: 1–104

    Google Scholar 

  • Mitchell-Olds T (1992) Does environmental variation maintain genetic variation? A question of scale. TREE 7 (12): 397–398

    PubMed  CAS  Google Scholar 

  • Newton AC (1992) Towards a functional classification of ectomycorrhizal fungi. Mycorrhiza 2: 75–79

    Article  Google Scholar 

  • Newton AC, Haig JM (1998) Diversity of ecto-mycorrhizal fungi in Britain: a test of the species area relationship and the role of host specificity. New Phytol 138: 619–627

    Article  Google Scholar 

  • Nitare J (1988) Changes in the mycoflora-research and species protection. Svensk Bot Tidskr 82: 485–489

    Google Scholar 

  • Norby RJ, O’Neill, EG, Hood WG, Luxmoore RJ (1987) Carbon allocation, root exudation, and mycorrhizal colonisation of Pinus echinata seedlings grown under CO2 enrichment. Tree Physiol 3: 203–210

    Article  PubMed  Google Scholar 

  • O’Neill EG, Luxmoore RJ, Norby RJ (1987) Increase in mycorrhizal colonisation and seedling growth in Pinus echinata and Quercus alba in an enriched CO2 atmosphere. Can J For Res 17: 878–883

    Article  Google Scholar 

  • Persson H, Ahlström K (1994) The effects of alkalizing compounds on fine-root growth in a Norway spruce stand in southwest Sweden. J Environ Sci Health 29: 803–820

    Article  Google Scholar 

  • Persson T, van Oene H, Harrison AF, Karlsson P, Bauer G, Cerny J, Coûteaux M-M, Dambrine E, Högberg P, Kjoller A, Matteucci G, Rudebeck A, Schulze E-D, Paces T (2000) Experimental sites in the NIPHYS/CANIF project. In: Schulze E-D (ed) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies, vol 142. Springer, Berlin Heidelberg New York, pp 14–46

    Chapter  Google Scholar 

  • Pigott CD (1982) Survival of mycorrhizas formed by Cenococcum geophilum Fr. in dry soils. New Phytol 92: 513–517

    Article  Google Scholar 

  • Pritsch K, Boyle H, Munch JC, Buscot F (1997) Characterization and identification of black alder ecto-mycorrhizas by PCR/RFLP analyses of the rDNA internal transcribed spacer ( ITS ). New Phytol 137: 357–369

    Google Scholar 

  • Putnam R (1994) Community ecology. Chapman and Hall, London

    Google Scholar 

  • Qian XM, Kottke I, Oberwinkler F (1998) Influence of liming and acidification on the activity of the mycorrhizal communities in a Picea abies (L.) Karst. stand. Plant Soil 199: 99–109

    Google Scholar 

  • Qiu Z, Chepellka AH, Somers GL, Lockaby BG, Meldahl RS (1993) Effects of Ozone and simulated acid precipitation on ecto-mycorrhizal formation on loblolly pine seedlings. Environ Exp Bot 33: 423–431

    Article  CAS  Google Scholar 

  • Raidi S (1997) Studien zur Ontigenie an Rhizomorphen von Ektomycorrhizen. Bibl Mykol 169: 1–184

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47: 376–391

    Article  Google Scholar 

  • Reddell P, Malajczuk N (1984) Formation of ecto-mycorrhizae by Jarrah (Eucalyptus marginata Donn ex Smith) in litter and soil. Aust J Bot 32: 511–520

    Article  Google Scholar 

  • Rey A, Jarvis PG (1997) Growth response of young birch trees (Betula pendula Roth.) after four and a half years of CO, exposure. Ann Bot 80: 809–816

    Article  Google Scholar 

  • Richardson MJ (1970) Studies on Russula emetica and other agarics in a Scots pine plantation. TBMS 55: 217–229

    Article  Google Scholar 

  • Roth DR, Fahey TJ (1998) The effects of acid precipitation and ozone on the ecto-mycorrhiza of red spruce saplings. Water Air Soil Poll 103: 263–276

    Article  CAS  Google Scholar 

  • Rouhier H, Read DJ (1998) Plant and fungal responses to elevated atmospheric carbon dioxide in mycorrhizal seedlings of Pinus sylvestris. Environ Exp Bot 40 (3): 237–246

    Article  Google Scholar 

  • Rouhier H, Read DJ (1999) Plant and fungal responses to elevated atmospheric CO2 in mycorrhizal seedlings of Betula pendula. Environ Exp Bot 42 (3): 231–241

    Article  Google Scholar 

  • Runion GB, Mitchell RJ, Rogers HH, Prior SA, Counts TK (1997) Effects of nitrogen and water limitation and elevated atmospheric CO2 on ecto-mycorrhiza of longleaf pine. New Phytol 137: 681–689

    Article  Google Scholar 

  • Rühling A, Söderström B (1990) Changes in fruitbody production of mycorrhizal and litter decomposing macromycetes in heavy metal polluted coniferous forests in north Sweden. Water Air Soil Poll 49: 375–387

    Article  Google Scholar 

  • Rygievicz PT, Johnson MG, Ganio LM, Tingey DT, Storm MJ (1997) Lifetime and temporal occurrence of ecto-mycorrhizae on ponderosa pine (Pinus ponderosa Laws.) seedlings grown under varied atmospheric CO, and nitrogen levels. Plant Soil 189: 275–287

    Article  Google Scholar 

  • Saunders E, Taylor AFS, Read DJ (1996) Ecto-mycorrhizal community response to simulated pollutant nitrogen deposition in a Sitka spruce stand, North Wales. In: Szaro TM, Bruns TD (eds) Abstracts of the 1st international conference on Mycorrhizae. Univ California, Berkeley 106

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Sohn RF (1981) Pisolithus tinctorius forms long ecto-mycorrhizae and alters root development in seedlings of Pinus resinosa Can J Bot 59:2129–2134

    Article  Google Scholar 

  • Stendell ER, Horton TR, Bruns TD (1999) Early effects of prescribed fire on the structure of the ecto-mycorrhizal fungus community in a Sierra Nevada ponderosa pine forest. Mycol Res 103: 1353–1359

    Article  Google Scholar 

  • Tamm CO (1991) Nitrogen in terrestrial ecosystems. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Taylor AFS, Martin F, Read DJ (2000) Fungal diversity in ecto-mycorrhizal communities of Norway spruce (Picea abies [L.] Karst.) and Beech (Fagus sylvatica L.) along north-south transects in Europe. In: Schulze E-D (ed) Ecological studies, vol 142. Springer, Berlin Heidelberg New York, pp 343–365

    Google Scholar 

  • Taylor DL, Bruns TD (1999) Community structure of ecto-mycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8: 1837–1850

    Article  PubMed  CAS  Google Scholar 

  • Termorshuizen AJ (1991) Succession of mycorrhizal fungi in stands of Pinus sylvestris in the Netherlands. J Veg Sci 2: 555–564

    Article  Google Scholar 

  • Termorshuizen AJ (1993) The influence of nitrogen fertilizers on ecto-mycorrhizas and their fungal carpophores in young stands of Pinus sylvestris. For Ecol Manage 57: 179–189

    Article  Google Scholar 

  • Termorshuizen AJ, Schaffers AP (1987) Occurrence of carpophores of ecto-mycorrhizal fungi in selected stands of Pinus sylvestris in the Netherlands in relation to stand vitality and air pollution. Plant Soil 104: 209–217

    Article  CAS  Google Scholar 

  • Thomson BD, Grove TS, Malajczuk N, Hardy GStJ (1994) The effectiveness of ecto-mycorrhizal fungi in increasing the growth of Eucalyptus globulus Labill, in relation to root colonisation and hyphal development in soil. New Phytol 126: 517–524

    Article  Google Scholar 

  • Tibbett M, Sanders FE, Cairney JWG (1998a) The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ecto-mycorrhizal Hebeloma species in axenic culture. Mycol Res 102: 129–135

    Article  CAS  Google Scholar 

  • Tibbett M, Grantham K, Sanders FE, Cairney JWG (1998b) Induction of cold active acid phosphomonoesterase activity at low temperature in pychrotrophic ecto-mycorrhizal Hebeloma spp. Mycol Res 102: 1533–1539

    Article  CAS  Google Scholar 

  • Tibbett M, Sanders FE, Cairney JWG, Leake JR (1999) Temperature regulation of extra-cellular proteases in ecto-mycorrhizal fungi (Hebeloma spp.) grown in axenic culture. Mycol Res 103: 707–714

    Article  Google Scholar 

  • Tokeshi M (1993) Species abundance patterns and community structure. Adv Ecol Res 24: 112–186

    Google Scholar 

  • Torres P, Honrubia M (1997) Changes and effects of natural fire on ecto-mycorrhizal inoculum potential of soil in a Pinus halepensis forest. For Ecol Manage 96: 189–196

    Article  Google Scholar 

  • Unestam T (1991) Water repellency, mat formation, and leaf stimulated growth of some ecto-mycorrhizal fungi. Mycorrhiza 1: 13–20

    Article  Google Scholar 

  • Visser (1995) Ecto-mycorrhizal fungal succession in jack pine stands following wild fire. New Phytol 129: 389–401

    Article  Google Scholar 

  • Wallander H, Nylund JE (1992) Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of ecto-mycorrhizas of Pinus sylvestris L. New Phytol 120: 495–503

    Article  CAS  Google Scholar 

  • Wallenda T, Kottke I (1998) Nitrogen deposition and ecto-mycorrhiza. New Phytol 139: 169–187

    Article  CAS  Google Scholar 

  • Wallenda T, Read DJ (1999) Kinetics of amino acid uptake by ecto-mycorrhizal roots. Plant Cell Environ 22 (2): 179–187

    Article  CAS  Google Scholar 

  • Wardle DA, Zackrisson O, Hörnberg G, Gallet C (1997) The influence of island size area upon ecosystem properties. Science 277: 1296–1299

    Article  CAS  Google Scholar 

  • Wollecke J, Münzenberger B, Huettl RF (1999) Some effects of N on ecto-mycorrhizal diversity of Scots pine (Pinus sylvestris L.) in northeastern Germany. Water Air Soil Pollut 116: 135–140

    Article  CAS  Google Scholar 

  • Worley JF, Hacskaylo E (1959) The effects of available soil moisture on the mycorrhizal associations of Virginia pine. For Sci 5: 267–268

    Google Scholar 

  • Yang G, Cha JY, Shibuya M, Yajima T, Takahashi K (1998) The occurrence and diversity of ecto-mycorrhizas of Larix kaempferi seedlings on a volcanic mountain in Japan. Mycol Res 102: 1503–1508

    Article  Google Scholar 

  • Zackrisson O (1977) Influence of forest fires on the north Swedish boreal forest. Oikos 29: 22–32

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Erland, S., Taylor, A.F.S. (2002). Diversity of Ecto-mycorrhizal Fungal Communities in Relation to the Abiotic Environment. In: van der Heijden, M.G.A., Sanders, I.R. (eds) Mycorrhizal Ecology. Ecological Studies, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38364-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38364-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00204-8

  • Online ISBN: 978-3-540-38364-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics