Skip to main content

Electrical Signals in Plants: Facts and Hypotheses

  • Chapter
Plant Electrophysiology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antkowiak B, Mayer WE, Engelmann W (1991) Oscillations in the membrane potential of pulvinar motor cells in situ in relation to leaflet movements of Desmodium motorium. J Exp Bot 42:901–910.

    Article  Google Scholar 

  • Assmann S (1995) Electrifying symbiosis. Proc Natl Acad Sci USA 92:1795–1796.

    Article  CAS  PubMed  Google Scholar 

  • Backster C (1968) Evidence of a primary perception in plant life. Int J Parapsychol 10:329–348.

    Google Scholar 

  • Baluska F, Mancuso S, Volkmann D (2006) Communications in plants. Neuronal aspects of plant life. Springer, Berlin Heidelberg New York.

    Book  Google Scholar 

  • Bertholon ML (1783) De l’Electricité des Végétaux, Alyon, Paris.

    Google Scholar 

  • Bezanilla F, Perozo E (2002) Force and voltage sensors in one structure. Science 298:1562–1563.

    Article  CAS  PubMed  Google Scholar 

  • Biskup B, Gradmann D, Thiel G (1999) Calcium release from InsP3-sensitive internal stores initiates action potential in Chara. FEBS Lett 453:72–76.

    Article  CAS  PubMed  Google Scholar 

  • Bogre L, Ligterink W, Heberle-Bors E, Hirt H (1996) Mechanosensors in plants. Nature 383:489–490.

    Article  CAS  PubMed  Google Scholar 

  • Bose JC, Das GP (1925) Physiological and anatomical investigations on Mimosa pudica. Proc R Soc B 98:290–312.

    Article  CAS  Google Scholar 

  • Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389.

    Article  PubMed  Google Scholar 

  • Burdon-Sanderson J (1873) Note on the electrical phenomena which accompany stimulation of a leaf of Dionaea muscipula. Trans R Soc Lond 21:495–496.

    Google Scholar 

  • Coker JS, Jones DA, Davies E (2003) Identification, conservation, and relative expression of V-ATPase cDNAs in tomato plants. Plant Mol Biol Rep 21:145–158.

    Article  CAS  Google Scholar 

  • Coker JS, Vian A, Davies E (2005) Identification, accumulation, and functional prediction of novel tomato transcripts systemically up-regulated after flame-wounding. Physiol Plant 124:311–322.

    Article  CAS  Google Scholar 

  • Darwin C (1875) Insectivorous plants. Murray, London.

    Google Scholar 

  • Darwin C (1881) The power of movements in plants. Murray, London.

    Google Scholar 

  • Davies E (1987a) Wound responses in plants. Biochem Plants 12:243–264.

    CAS  Google Scholar 

  • Davies E (1987b) Action potentials as multifunctional signals in plants: a hypothesis attempting to unify apparently disparate wound responses. Plant Cell Environ 10:623–631.

    Article  Google Scholar 

  • Davies E (1990) Plant wound signals and translation. Proceedings of the 13th international congress on plant growth substances, pp 519–530.

    Google Scholar 

  • Davies E (1993) Intercellular and intracellular signals in plants and their transduction via the membrane–cytoskeleton interface. Semin Cell Biol 4:139–147.

    Article  CAS  PubMed  Google Scholar 

  • Davies E (2004) Commentary: new functions for electrical signals in plants. New Phytol 161:607–610.

    Article  Google Scholar 

  • Davies E, Schuster A (1981a) Intercellular communication in plants: Evidence for a rapidly-generated, bidirectionally-transmitted wound signal. Proc Natl Acad Sci USA 78:2422–2426.

    Article  CAS  PubMed  Google Scholar 

  • Davies E, Schuster A (1981b) Wounding, action potentials and polysome formation. Plant Physiol 67:538.

    Google Scholar 

  • Davies E, Stankovic B (2006) Electrical signals, the cytoskeleton, and gene expression: a hypothesis on the coherence of the cellular responses to environmental insult. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants. Neuronal aspects of plant life. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Davies E, Zawadzki T, Witters D (1991) Electrical activity and signal transmission in plants: how do plants know? In: Penel C, Greppin H (eds) Plant signaling, plasma membrane and change of state, University of Geneva Press, Geneva, Switzerland, pp 119–137.

    Google Scholar 

  • Davies E, Vian A, Vian C, Stankovic B (1997) Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation. Acta Physiol Plant 19:571–576.

    Article  CAS  PubMed  Google Scholar 

  • Davies E, Abe S, Larkins BA, Clore AM, Quatrano RS, Weidner S (1998) The role of the cytoskeleton in plant protein synthesis. In: Bailey-Serres J, Gallie DR (eds) A look beyond transcription: mechanisms determining mRNA stability and translation in plants. ASPP, pp 115–124, Rockville, MD, USA.

    Google Scholar 

  • Dziubinska H (2003) Ways of signal transmission and physiological role of electrical potentials in plants. Acta Soc Bot Pol 72:309–318.

    Google Scholar 

  • Dziubinska H, Trebacz K, Zawadzki T (2001) Transmission route for action potentials and variation potentials in Helianthus annuus. L. J Plant Physiol 158:1167–1172.

    Article  CAS  Google Scholar 

  • Eschrich W, Fromm J, Evert RF (1988) Transmission of electric signals in sieve tubes of zucchini plants. Bot Acta 101:327–331.

    Google Scholar 

  • Felle HH, Kondorosi E, Kondorosi A, Schultze M (1995) Nod signal-induced plasma membrane potential changes are differentially sensitive to structural modification of the lipochitooligosacchraride. Plant J 7:939–947.

    Article  CAS  Google Scholar 

  • Fisahn J, Herde O, Willmitzer L, Pena-Cortes H (2004) Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: requirement of Ca2+ transients for induction of jasmonic acd biosynthesis and PINII gene expression. Plant Cell Physiol 45:456–459.

    Article  CAS  PubMed  Google Scholar 

  • Fromm J, Spanswick R (1993) Characteristics of action potentials in willow (Salix viminalis L.). J Exp Bot 264:1119–1125.

    Article  Google Scholar 

  • Fromm J, Hajirezaei M, Wilke I (1995) The biochemical response of electrical signaling in the reproductive system of Hibiscus plants. Plant Phys 109:375–384.

    CAS  Google Scholar 

  • Galston AW, Slayman CL (1979) The not-so-secret life of plants. Bioscience 29:337–344.

    Article  Google Scholar 

  • Galvani L (1791) De viribus electricitatis in motu musculari commentarius. Bononiae Instituti Scientiarum, Bologna.

    Google Scholar 

  • Gradmann D, Mummert H (1980) Plant action potentials. In: Spanswick RM, Lucas WJ, Dainty J (eds) Membrane transport: current conceptual issues. Elsevier/North-Holland Press, Amsterdam, pp 333–344.

    Google Scholar 

  • Harold FM, Caldwell JD (1990) Tips and currents: electrobiology of apical growth. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, San Diego, pp 59–89.

    Google Scholar 

  • Horn R (2005) How ions channels sense membrane potential. Proc Natl Acad Sci USA 102:4929–4930.

    Article  CAS  PubMed  Google Scholar 

  • Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J (2003) Transient knockout of photosynthesis mediated by electrical signals. New Phytol 161:715–722.

    Article  Google Scholar 

  • Krol E, Trebacz K (1999) Calcium-dependent voltage transients evoked by illumination in the liverwort Conocephalum conicum. Plant Cell Physiol 40:17–24.

    CAS  Google Scholar 

  • Ksenzhek OS, Volkov AG (1998) Plant energetics. Academic Press, San Diego.

    Google Scholar 

  • Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K (2005) Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J 42:798–809.

    Article  CAS  PubMed  Google Scholar 

  • Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209.

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Li L, Luan S (2005) An essential function of phosphatylinositol phosphates in activation of plant shaker-type K+ channels. Plant J 42:433–443.

    Article  CAS  PubMed  Google Scholar 

  • MacKimmon R (2004) Voltage sensor meets lipid membrane. Science 306:1303–1305.

    Google Scholar 

  • Maffei M, Bossi S, Spiteller D, Mithofer A, Boland W (2004) Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intercellular calcium variations, oral secretions, and regurgitate components. Plant Physiol 134:1752–1762.

    Article  CAS  PubMed  Google Scholar 

  • Malone M (1994) Wound-induced hydraulic signals and stimulus perception in Mimosa pudica L. New Phytol 128:49–56.

    Article  Google Scholar 

  • Malone M (1996) Rapid, long-distance signal transmission in higher plants. Adv Bot Res 22:163–228.

    Article  CAS  Google Scholar 

  • Malone M, Stankovic B (1991) Surface potentials and hydraulic signals in wheat leaves following localized wounding by heat. Plant Cell Environ 14:431–436.

    Article  Google Scholar 

  • Malone M, Alarcon J-L, Palumbo L (1994) A hydraulic interpretation of rapid, long-distance wound signalling in the tomato. Planta 193:181–185.

    Article  CAS  Google Scholar 

  • Malone M, Palumbo L, Boari F, Monteleone M, Jones HG (1994) The relationship between wound-induced proteinase inhibitors and hydraulic signals in tomato seedlings. Plant Cell Environ 17:81–87.

    Article  CAS  Google Scholar 

  • Mancuso S (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust J Plant Physiol 26:55–61.

    Article  Google Scholar 

  • Mitsumo T, Sibaoka T (1989) Rhythmic electrical potential change of motor pulvinus in lateral leaflet of Codariocalyx motorius. Plant Cell Physiol 30:1123–1127.

    Google Scholar 

  • Mori MX, Erickson MG, Yue DT (2004) Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. Science 304:432–435.

    Article  CAS  PubMed  Google Scholar 

  • Pickard B (1973) Action potentials in higher plants. Botanical Reviews 39:172–201.

    Article  Google Scholar 

  • Pickard B (1984a) Voltage transients elicited by sudden step-up of auxin. Plant Cell Environ 7:171–178.

    CAS  PubMed  Google Scholar 

  • Pickard B (1984b) Voltage transients elicited by brief chilling. Plant Cell Environ 7:679–681.

    CAS  PubMed  Google Scholar 

  • Pickard WF (2001) A novel class of fast electrical events recorded by electrodes implanted in tomato shoots. Aust J Plant Physiol 28:121–129.

    Google Scholar 

  • Pike SM, Zhang X-C, Gassmann W (2005) Electrophysiological characterization of the Arabidopsis avrRpt2-specific hypersensitive response in the absence of other bacterial signals. Plant Physiol 138:1009–1017.

    Article  CAS  PubMed  Google Scholar 

  • Plieth C, Sattelmacher B, Hansen U-P, Thiel G (1998) The action potential in Chara: Ca2+ released from internal stores visualized by Mn2+-induced quenching of fura-dextran. Plant J 13:167–175.

    Article  CAS  Google Scholar 

  • Pyatygin SS, Opritov VA, Khudyakhov VA (1992) Subthreshold changes in excitable membranes of Cucurbita pepo L stem cells during cooling-induced action potential generation. Planta 186:161–165.

    Article  CAS  Google Scholar 

  • Roblin G, Bonnemain J-L (1985) Propagation in Vicia faba stem of a potential variation induced by wounding. Plant Cell Physiol. 26:1273–1283.

    Google Scholar 

  • Samejima M, Sibaoka T (1980) Changes in extracellular ion concentration in the main pulvinus of Mimosa pudica during rapid movement and recovery. Plant Cell Physiol 21:467–479.

    CAS  Google Scholar 

  • Shimmen T (1997) Studies on mechano-perception in Characeae: effects of external Ca2+ and Cl-. Plant Cell Physiol 38:691–699.

    CAS  Google Scholar 

  • Simons PJ (1981) The role of electricity in plant movements. New Phytol 87:11–37.

    Article  CAS  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1995) Comparison of electric and growth responses to excision in cucumber and pea seedlings. II. Long distance effects are caused by the release of xylem pressure. Plant Cell Environ 18:33–41.

    Article  CAS  PubMed  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1996) Induction and ionic basis of slow wave potentials in seedlings of Pisum sativum L. Planta 200:416–425.

    Article  CAS  PubMed  Google Scholar 

  • Stahlberg R, Cleland RE, van Volkenburgh E (2005) Decrement and amplification of slow wave potentials during their propagation in Helianthus annuus L. shoots. Planta 220:550–558.

    Article  CAS  PubMed  Google Scholar 

  • Stankovic B, Davies E (1996) Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett 390:275–279.

    Article  CAS  PubMed  Google Scholar 

  • Stankovic B, Davies E (1997a) Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta 202:402–406.

    Article  CAS  Google Scholar 

  • Stankovic B, Davies E (1997b) Wounding evokes rapid changes in tissue deformation, electrical potential, transcription, and translation in tomato. Plant Cell Physiol 39:268–274.

    Google Scholar 

  • Stankovic B, Zawadzki T, Davies E (1997) Characterization of the variation potential in sunflower. Plant Physiol 115:1083–1088.

    CAS  PubMed  Google Scholar 

  • Stankovic B, Witters DL, Zawadzki T, Davies E (1998) Action potentials and variation potentials in sunflower: an analysis of their relationships and distinguishing characteristics. Physiol Plant 105:51–58.

    Article  Google Scholar 

  • Stankovic B, Vian A, Henry-Vian C, Davies E (2000) Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA-binding protein. Planta 212:60.

    Article  CAS  PubMed  Google Scholar 

  • Sussman MR (1992) Shaking Arabidopsis thaliana. Science 256:619.

    Article  PubMed  Google Scholar 

  • Tazawa M, Kikuyama M (2003) Is Ca2+ release from internal stores involved in membrane excitation in characean cells. Plant Cell Physiol 44:518–526.

    Article  CAS  PubMed  Google Scholar 

  • Tester M (1990) Plant ion channels: whole cell and single channel studies. New Phytol 114:305–340.

    Article  Google Scholar 

  • Tompkins P, Bird C (1973) The secret life of plants. Harper and Row, New York.

    Google Scholar 

  • Trebacz K, Zawadzki T (1985) Light-triggered action potentials in the liverwort Conocephalum conicum. Physiol Plant 64:482–486.

    Article  Google Scholar 

  • Trebacz K, Simonias W, Schonknecht G (1994) Cytoplasmic Ca2+, K+, Cl-, and NO3 - activities in the liverwort Conocephalum conicum L, at rest and during action potentials. Plant Phys 106:1073–1084.

    CAS  Google Scholar 

  • Vian A, Henry-Vian C, Davies E (1999) Rapid and systemic accumulation of chloroplast mRNA binding protein transcripts after flame stimulus in tomato. Plant Physiol 121:517–524.

    Article  CAS  PubMed  Google Scholar 

  • Volkov AG, Haack RA (1995) Insect induced bioelectrochemical signals in potato plants. Bioelectrochem Bioenerg 35:55–60.

    Article  Google Scholar 

  • Volkov AG (2000) Green plants/electrochemical interfaces. J Electroanal Chem 483:150–156.

    Article  CAS  Google Scholar 

  • Volkov AG, Dunkley TC, Labady AJ, Brown C (2005) Phototropism and electrified interfaces in green plants. Electrochim Acta 504241–4247.

    Article  CAS  Google Scholar 

  • Wacke M, Thiel G (2001) Electrically-triggered all-or-none liberation during action potential in the giant alga, Chara. J Gen Physiol 118:11–21.

    Article  CAS  PubMed  Google Scholar 

  • Wayne R (1994) The excitability of plant cells: with a special emphasis on characean internodal cells. Bot Rev 60:265–367.

    Article  CAS  PubMed  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signaling and systemic proteinase inhibitor induction in the wounded plant. Nature 360: 62–65.

    Article  CAS  Google Scholar 

  • Zawadzki T, DaviesE, Dziubinska H, Trebacz K (1991) Characteristics of action potentials in Helianthus annuus L. Physiol Plant 83:601–604.

    Article  Google Scholar 

  • Zawadzki T, Dziubinska H, Davies E (1995) Characteristics of action potentials generated spontaneously in Helianthus annuus. Physiol Plant 93:291–297.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davies, E. (2006). Electrical Signals in Plants: Facts and Hypotheses. In: Volkov, A.G. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37843-3_17

Download citation

Publish with us

Policies and ethics