Skip to main content
Log in

Na+ entry and modulation of Na+/Ca2+ exchange as a key mechanism of TRPC signaling

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Ion channels formed by canonical transient receptor potential (TRPC) proteins are considered to be key players in cellular Ca2+ homeostasis. As permeation of Ca2+ through TRPC homo- and/or heteromeric channels has been repeatedly demonstrated, analysis of the physiological role of TRPC proteins was so far based on the concept that these proteins form regulated Ca2+ entry channels. The well-recognized lack of cation selectivity of TRPC channels and the ability to generate substantial monovalent conductances that govern membrane potential and cation gradients were barely appreciated as a physiologically relevant issue. Nonetheless, recent studies suggest monovalent, specifically Na+ permeation through TRPC cation channels as an important event in TRPC signaling. TRPC-mediated Na+ entry may be converted into a distinct pattern of cellular Ca2+ signals by interaction with Na+/Ca2+ exchanger proteins. This review discusses current concepts regarding the link between Na+ entry through TRPC channels and cellular Ca2+ signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    Article  CAS  PubMed  Google Scholar 

  2. Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9:229–231

    CAS  PubMed  Google Scholar 

  3. Liu X, Wang W, Singh BB, Lockwich T, Jadlowiec J, O’Connell B, Wellner R, Zhu MX, Ambudkar IS (2000) Trp1, a candidate protein for the store-operated Ca2+ influx mechanism in salivary gland cells. J Biol Chem 275:3403–3411

    Article  CAS  PubMed  Google Scholar 

  4. Wu X, Babnigg G, Villereal ML (2000) Functional significance of human trp1 and trp3 in store-operated Ca2+ entry in HEK-293 cells. Am J Physiol 278:C526–C536

    CAS  PubMed  Google Scholar 

  5. Liu X, Singh BB, Ambudkar IS (2003) TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5-S6 region. J Biol Chem 278:11337–11343

    Article  CAS  PubMed  Google Scholar 

  6. Groschner K, Hingel S, Lintschinger B, Balzer M, Romanin C, Zhu X, Schreibmayer W (1998) Trp proteins form store-operated cation channels in human vascular endothelial cells. FEBS Lett 437:101–106

    Article  CAS  PubMed  Google Scholar 

  7. Baldi C, Vazquez G, Calvo JC, Boland R (2003) TRPC3-like protein is involved in the capacitative cation entry induced by 1 alpha,25-dihydroxy-vitamin D3 in ROS 17/2.8 osteoblastic cells. J Cell Biochem 90:197–205

    Article  CAS  PubMed  Google Scholar 

  8. Wu X, Zagranichnaya TK, Gurda GT, Eves EM, Villereal ML (2004) A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19-7 hippocampal neuronal cells. J Biol Chem 279:43392–43402

    Article  CAS  PubMed  Google Scholar 

  9. Philipp S, Trost C, Warnat J, Rautmann J, Himmerkus N, Schroth G, Kretz O, Nastainczyk W, Cavalie A, Hoth M, Flockerzi V (2000) TRP4 (CCE1) protein is part of native calcium release-activated Ca2+-like channels in adrenal cells. J Biol Chem 275:23965–23972

    Article  CAS  PubMed  Google Scholar 

  10. Sinkins WG, Estacion M, Schilling WP (1998) Functional expression of TrpC1: a human homologue of the Drosophila Trp channel. Biochem J 331(Pt1):331–339

    CAS  PubMed  Google Scholar 

  11. McKay RR, Szymeczek-Seay CL, Lievremont JP, Bird GS, Zitt C, Jungling E, Luckhoff A, Putney JW Jr (2000) Cloning and expression of the human transient receptor potential 4 (TRP4) gene: localization and functional expression of human TRP4 and TRP3. Biochem J 351(Pt 3):735–746

    Article  CAS  PubMed  Google Scholar 

  12. Rosker C, Graziani A, Lukas M, Eder P, Zhu MX, Romanin C, Groschner K (2004) Ca2+ signaling by TRPC3 involves Na+ entry and local coupling to the Na+/Ca2+ exchanger. J Biol Chem 279:13696–13704

    Article  CAS  PubMed  Google Scholar 

  13. Vennekens R, Voets T, Bindels RJ, Droogmans G, Nilius B (2002) Current understanding of mammalian TRP homologues. Cell Calcium 31:253–264

    CAS  PubMed  Google Scholar 

  14. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  CAS  PubMed  Google Scholar 

  15. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol 3:121–127

    Article  CAS  PubMed  Google Scholar 

  16. Liu X, Groschner K, Ambudkar IS (2004) Distinct Ca2+-permeable cation currents are activated by internal Ca2+-store depletion in RBL-2H3 cells and human salivary gland cells, HSG and HSY. J Membr Biol 200:93–104

    Article  CAS  PubMed  Google Scholar 

  17. Lintschinger B, Balzer-Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, Groschner K (2000) Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J Biol Chem 275:27799–27805

    CAS  PubMed  Google Scholar 

  18. Vazquez G, Wedel BJ, Trebak M, Bird GS, Putney JW Jr (2003) Expression level of TRPC3 channel determines its mechanism of activation. J Biol Chem 278(24):21649–21654

    Article  CAS  PubMed  Google Scholar 

  19. Hurst RS, Zhu X, Boulay G, Birnbaumer L, Stefani E (1998) Ionic currents underlying HTRP3 mediated agonist-dependent Ca2+ influx in stably transfected HEK293 cells. FEBS Lett 422:333–338

    Article  CAS  PubMed  Google Scholar 

  20. Kamouchi M, Philipp S, Flockerzi V, Wissenbach U, Mamin A, Raeymaekers L, Eggermont J, Droogmans G, Nilius B (1999) Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J Physiol 518 (Pt 2):345–358

    Article  CAS  PubMed  Google Scholar 

  21. Paltauf-Doburzynska J, Frieden M, Spitaler M, Graier WF (2000) Histamine-induced Ca2+ oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca2+-ATPase. J Physiol 524 (Pt 3):701–713

    Article  CAS  PubMed  Google Scholar 

  22. Lee CH, Poburko D, Kuo KH, Seow C, van Breemen C (2002) Relationship between the sarcoplasmic reticulum and the plasma membrane. Novartis Found Symp 246:26–41; discussion 41–47, 48–51

    CAS  PubMed  Google Scholar 

  23. Craner MJ, Hains BC, Lo AC, Black JA, Waxman SG (2004) Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain 127:294–303

    Article  PubMed  Google Scholar 

  24. Hinata M, Kimura J (2004) Forefront of Na+/Ca2+ exchanger studies: stoichiometry of cardiac Na+/Ca2+ exchanger; 3:1 or 4:1? J Pharmacol Sci 96:15–18

    Article  CAS  PubMed  Google Scholar 

  25. Solis-Garrido LM, Pintado AJ, Andres-Mateos E, Figueroa M, Matute C, Montiel C (2004) Cross-talk between native plasmalemmal Na+/Ca2+ exchanger and inositol 1,4,5-trisphosphate-sensitive Ca2+ internal store in Xenopus oocytes. J Biol Chem 279:52414–52424

    Article  CAS  PubMed  Google Scholar 

  26. Aiello EA, Villa-Abrille MC, Dulce RA, Cingolani HE, Perez NG (2005) Endothelin-1 stimulates the Na+/Ca2+ exchanger reverse mode through intracellular Na+ (Nai+)-dependent and Na+i-independent pathways. Hypertension 45:288–293

    Article  CAS  PubMed  Google Scholar 

  27. Perez NG, Villa-Abrille MC, Aiello EA, Dulce RA, Cingolani HE, Camilion de Hurtado MC (2003) A low dose of angiotensin II increases inotropism through activation of reverse Na+/Ca2+ exchange by endothelin release. Cardiovasc Res 60:589–597

    Article  CAS  PubMed  Google Scholar 

  28. Poteser M, Wakabayashi I, Rosker C, Teubl M, Schindl R, Soldatov NM, Romanin C, Groschner K (2003) Crosstalk between voltage-independent Ca2+ channels and L-type Ca2+ channels in A7r5 vascular smooth muscle cells at elevated intracellular pH: evidence for functional coupling between L-type Ca2+ channels and a 2-APB-sensitive cation channel. Circ Res 92:888–896

    Article  CAS  PubMed  Google Scholar 

  29. Zhang S, Yuan JX, Barrett KE, Dong H (2005) Role of Na+/Ca2+ exchange in regulating cytosolic Ca2+ in cultured human pulmonary artery smooth muscle cells. Am J Physiol 288:C245–C252

    Article  CAS  Google Scholar 

  30. Roberts DE, Bose R (2002) Reverse mode Na+/Ca2+ exchange in the collagen activation of human platelets. Ann NY Acad Sci 976:345–349

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the Fonds zur Förderung der wissenschaftlichen Forschung in Austria

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Groschner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eder, P., Poteser, M., Romanin, C. et al. Na+ entry and modulation of Na+/Ca2+ exchange as a key mechanism of TRPC signaling. Pflugers Arch - Eur J Physiol 451, 99–104 (2005). https://doi.org/10.1007/s00424-005-1434-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1434-2

Keywords

Navigation